Mỗi dãy số (un) sau có phải là một cấp số cộng hay không? Nếu có, hãy tìm số hạng đầu và công sai của nó

165

Với Giải Bài 2.11 trang 36 SBT Toán 11 Tập 1 trong Bài 6: Cấp số cộng Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Mỗi dãy số (un) sau có phải là một cấp số cộng hay không? Nếu có, hãy tìm số hạng đầu và công sai của nó

Bài 2.11 trang 36 SBT Toán 11 Tập 1Mỗi dãy số (un) sau có phải là một cấp số cộng hay không? Nếu có, hãy tìm số hạng đầu và công sai của nó:

a) un = 4 – 3n;

b) un = n2 + 1;

c) un = 2n + 5;

d) u1 = 3, un + 1 = un + n.

Lời giải:

a) Từ un = 4 – 3n suy ra un + 1 = 4 – 3(n + 1) = 4 – 3n – 3 = 1 – 3n.

Như vậy un + 1 – u= (1 – 3n) – (4 – 3n) = – 3 không đổi với mọi n.  

Vậy dãy số đã cho là cấp số cộng với số hạng đầu u1 = 4 – 3 = 1 và công sai d = – 3.

b) Từ un = n2 + 1 suy ra un + 1 = (n + 1)2 + 1 = n2 + 2n + 2.

Như vậy un + 1 – u= (n2 + 2n + 2) – (n2 + 1) = 2n + 1, phụ thuộc vào n.

Vậy dãy số đã cho không là cấp số cộng.

c) Từ un = 2n + 5 suy ra un + 1 = 2(n + 1) + 5 = 2n + 7.

Như vậy un + 1 – u= (2n + 7) – (2n + 5) = 2 không đổi với mọi n.

Vậy dãy số đã cho là cấp số cộng với số hạng đầu u1 = 2 + 5 = 7 và công sai d = 2.

d) Từ hệ thức truy hồi ta có un + 1 = un + n, suy ra un + 1 – u= n, phụ thuộc vào n.

Vậy dãy số đã cho không là cấp số cộng.

Đánh giá

0

0 đánh giá