SBT Toán 8 trang 19 Tập 1 (Cánh diều)

251

Với Giải Bài tập trang 19 SBT Toán 8 Tập 1 trong Bài tập cuối chương 1 Sách bài tập Toán lớp 8 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 8. 

SBT Toán 8 trang 19 Tập 1 (Cánh diều)

Bài 31 trang 19 SBT Toán 8 Tập 1: Cho hai đa thức: M = 23x23y ‒ 22xy23 +21y ‒ 1và N = ‒22xy3 ‒ 42y ‒ 1.

a) Tính giá trị của mỗi đa thức M, N tại x = 0; y = –2.

b) Tính M + N; M – N.

c) Tìm đa thức P sao cho M – N – P = 63y + 1.

Lời giải:

a) Thay x = 0; y = –2 vào M ta có:

M = 23. 023.(‒2) ‒ 22.0.2.(‒2)23 +21.(‒2) ‒ 1 = – 42 – 1 = ‒43.

Thay x = 0; y = –2 vào N ta có:

N = ‒22.0.(‒2)3 ‒ 42.(‒2) ‒ 1 = 82 + 1 = 83.

b) Ta có:

M + N = 23x23y ‒ 22xy23 + 21y ‒ 1 + (‒ 22xy3 ‒ 42y ‒ 1)

= 23x23y ‒ 22xy23 ‒ 22xy3 + (21y – 42y) + (‒1 – 1)

= 23x23y ‒ 22xy23 ‒ 22xy3 ‒ 21y ‒ 2.

M + N = 23x23y ‒ 22xy23 +21y ‒ 1 – (‒22xy3 ‒ 42y ‒ 1)

= 23x23y ‒ 22xy23 +21y ‒ 1 + 22xy3 + 42y + 1

= 23x23y ‒ 22xy23 + 22xy3 + 63y.

c) Ta cóM – N – P = 63y + 1

Suy ra P = M – N ‒ (63y + 1)

= 23x23y ‒ 22xy23 + 22xy3 + 63y ‒ 63y ‒ 1

= 23x23y ‒ 22xy23 + 22xy3 ‒ 1.

Bài 32 trang 19 SBT Toán 8 Tập 1: Thực hiện phép tính:

a) 7x2y5-73y23x2y3+1;

b) 12xx2+y2-32y2x+1-14x3;

c) (x + y)(x2 + y2 + 3xy) ‒ x3 ‒ y3;

d) (‒132xn+1y10zn+2 + 143xn+2y12zn) : (11xny9zn)với n là số tự nhiên.

Lời giải:

a) 7x2y5-73y23x2y3+1

=7x2y5-7x2y5-73y2

=-73y2.

b) 12xx2+y2-32y2x+1-14x3

=12x3+12xy2-32xy2-32y2-12x3

=12x3-12x3+12xy2-32xy2-32y2

=-xy2-32y2.

c) (x + y)(x2 + y2 + 3xy) ‒ x3 ‒ y3

= (x + y)(x2 + y2 + 3xy) ‒ (x3 + y3)

= (x + y)(x2 + y2 + 3xy) ‒ (x + y)(x2 ‒ xy + y2)

= (x + y)( x2 + y2 + 3xy ‒ x2 + xy ‒ y2)

= (x + y).4xy

= 4x2y + 4xy2.

d) (‒132xn + 1y10zn + 2 + 143xn + 2y12zn) : (11xny9zn)

= (‒132xn + 1y10zn + 2 : 11xny9zn) + (143xn + 2y12zn : 11xny9zn)

= (‒132 : 11)(xn + 1 : xn)(y10 : y9)(zn + 2 : zn) + (143 : 11)(xn + 2 : xn)(y12 : y9)(zn : zn)

= ‒12xyz2 + 13x2y3.

Bài 33* trang 19 SBT Toán 8 Tập 1: Cho a, b, c là ba số tuỳ ý. Chứng minh: Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.

Lời giải:

Do a + b + c = 0nên c = ‒a ‒ b.

Khi đó:

a3 + b3 + c3 = a3 + b3 + (‒a ‒ b)3

= a3 + b3 + (‒a)3 ‒ 3(–a)2b + 3(–a)b2 ‒ b3

= a3 + b3 ‒ a3 ‒ 3a2b ‒ 3ab2 ‒ b3

= ‒3a2b ‒ 3ab2 = 3ab(‒a ‒ b) = 3abc

Vậy nếu a + b + c = 0thì a3 + b3 + c3 = 3abc.

Bài 34 trang 19 SBT Toán 8 Tập 1: Tính giá trị của mỗi biểu thức sau:

a) A = 16x2 ‒ 8xy + y2 ‒ 21 biết 4x = y + 1;

b) B = 25x2 + 60xy + 36y2 + 22biết 6y = 2 ‒ 5x;

c) C = 27x3 – 27x2y + 9xy2 – y3 – 121 biết 3x = 7 + y.

Lời giải:

a) A = 16x2 ‒ 8xy + y2 ‒ 21

= [(4x)2 ‒ 2.4x.y + y2] ‒ 21

= (4x ‒ y)2 ‒ 21

Mà 4x = y + 1 nên 4x ‒ y = 1

Thay vào A ta có:A = 12 ‒ 21 = ‒20.

b) B = 25x2 + 60xy + 36y2 + 22

= [(5x)2 + 2.5x.6y + (6y)2] +22

= (5x + 6y)2 +22

Mà 6y = 2 ‒ 5x nên 5x + 6y = 2

Thay vào B ta có:

B = 22 + 22 = 26.

c) C = 27x3 – 27x2y + 9xy2 – y3 – 121

= [(3x)3 ‒ 3.(3x)2.y + 3.3x.y2 – y3]– 121

= (3x ‒ y)3 ‒ 121

Mà 3x = 7 + ynên 3x ‒ y = 7

Thay vào C ta có:

C = 73 ‒ 121 = 343 – 121 = 222.

Đánh giá

0

0 đánh giá