15 câu trắc nghiệm Bất phương trình bậc nhất hai ẩn (Chân trời sáng tạo) có đáp án - Toán 10

Toptailieu.vn xin giới thiệu 15 câu trắc nghiệm Bất phương trình bậc nhất hai ẩn (có đáp án) chọn lọc, hay nhất giúp học sinh lớp 10 ôn luyện kiến thức để đạt kết quả cao trong các bài thi môn Toán.

Mời các bạn đón xem:

18 câu trắc nghiệm Bất phương trình bậc nhất hai ẩn (có đáp án) chọn lọc

Câu 1. Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?

A. 4x + 5y – t + 1 > 0;

B. 2x – y – 1 > 0;

C. x2 + y < 1;

D. 5x6y - x > 0.

Đáp án: B

Câu A: 4x + 5y – t + 1 > 0 là bất phương trình bậc nhất 3 ẩn x, y, t, không là bất phương trình bậc nhất hai ẩn.

Câu B: 2x – y – 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -1, c = -1.

Câu C: x2 + y < 1 là bất phương trình có chứa x2 nên không là bất phương trình bậc nhất hai ẩn.

Câu D: 5x6y - x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.

Vậy ta chọn phương án B.

Câu 2Xác định các hệ số a, b, c của bất phương trình bậc nhất hai ẩn sau: 5x – 1 ≤ 6y?

A. a = 5, b = -1, c = 6;

B. a = 5, b = -6, c = -1;

C. a = 5, b = 6, c = -1;

D. a = 5, b = 1; c = -6.

Đáp án: B

Bất phương trình 5x – 1 ≤ 6y 5x – 6y – 1 ≤ 0 là bất phương trình bậc nhất hai ẩn dạng ax + by + c ≤ 0 nên có hệ số là a = 5, b = -6, c = -1.

Vậy ta chọn phương án B.

Câu 3Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y – 1 < 0?

A. (x; y) = (2; 3);

B. (x; y) = (1; 2);

C. (x; y) = (0; 1);

D. (x; y) = (-1; 0).

Đáp án: D

+) Xét cặp số (2; 3): Thay x = 2, y = 3 vào bất phương trình ta có: 2 + 2. 3 – 1 = 7 < 0 là mệnh đề sai, nên cặp số (2; 3) không là nghiệm của bất phương trình đã cho.

+) Xét cặp số (1; 2): Thay x = 1, y = 2 vào bất phương trình ta có: 1 + 2. 2 – 1 = 4 < 0 là mệnh đề sai, nên cặp số (1; 2) không là nghiệm của bất phương trình đã cho.

+) Xét cặp số (0; 1): Thay x = 0, y = 1 vào bất phương trình ta có: 0 + 2. 1 – 1 =1 < 0 là mệnh đề sai, nên cặp số (0; 1) không là nghiệm của bất phương trình đã cho.

+) Xét cặp số (-1; 0): Thay x = -1, y = 0 vào bất phương trình ta có: -1 + 2. 0 – 1 = -2 < 0 là mệnh đề đúng, nên cặp số (-1; 0) là nghiệm của bất phương trình đã cho.

Vậy ta chọn phương án D.

Câu 4Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x0; y0) sao cho ax0 + by0 + c < 0 được gọi là ……của bất phương trình ax + by + c < 0”.

A. tập xác định;

B. tập giá trị;

C. miền nghiệm;

D. nghiệm.

Đáp án: C

Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x0; y0) sao cho ax0 + by0 + c < 0 được gọi là miền nghiệm của bất phương trình ax + by + c < 0.

Câu 5Để biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn 2x + y – 4 > 0, bạn An đã làm theo 3 bước:

Bước 1: Trên mặt phẳng tọa độ Oxy, vẽ đường thẳng ∆: 2x + y – 4 = 0.

Bước 2: Lấy một điểm (0; 0) không thuộc ∆. Tính 2. 0 + 0 – 4 = 4.

Bước 3: Kết luận:

Do 4 < 0 nên miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ ∆) chứa điểm (0; 0).

Bước 4: Biểu diễn miền nghiệm trên trục tọa độ Oxy:

15 Bài tập Bất phương trình bậc nhất hai ẩn (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

Cô giáo kiểm tra bài bạn An và nói rằng bài bạn làm sai. Bạn An đã làm sai từ bước nào?

A. Bước 1;

B. Bước 2;

C. Bước 3;

D. Bước 4.

Đáp án: C

Bạn An đã làm sai ở Bước 3: Kết luận:

Do ‒4 < 0 nên miền nghiệm của bất phương trình 2x + y – 4 > 0 là nửa mặt phẳng (không kể bờ ∆) không chứa điểm (0; 0).

Câu 6Hình vẽ sau biểu diễn miền nghiệm (phần không bị gạch) của bất phương trình bậc nhất hai ẩn nào?

15 Bài tập Bất phương trình bậc nhất hai ẩn (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

 

A. x + 2y – 2 > 0;

B. 3x + y – 2 < 0;

C. x – 2y + 1 < 0

D. x + 3y > 0.

Đáp án: A

Ta thấy đường thẳng ∆ cắt 2 trục tọa độ tại điểm A(0; 1) và B(2; 0).

Câu A: Thay x = 0, y = 1 vào phương trình x + 2y – 2 = 0 ta được 0 + 2. 1 – 2 = 0 = 0 là mệnh đề đúng.

Thay x = 2, y = 0 vào phương trình x + 2y – 2 = 0 ta được 2 + 2.0 – 2 = 0 = 0 là mệnh đề đúng.

Thay x = 0, y = 0 vào bất phương trình x + 2y – 2 > 0 ta được 0 + 2.0 – 2 = -2 > 0 là mệnh đề sai, vậy điểm O(0; 0) không thỏa mãn bất phương trình, nên miền nghiệm của bất phương trình x + 2y – 2 > 0 là bờ đường thẳng x + 2y – 2 = 0, không chứa điểm O. Vậy A đúng.

Câu B: Thay x = 0, y = 1 vào phương trình 3x + y – 2 = 0 ta có 3. 0 + 1 – 2 = -1 = 0 là mệnh đề sai, vậy câu B sai.

Câu C: Thay x = 0, y = 1 vào phương trình x - 2y + 1 = 0 ta có 0 - 2. 1 + 1 = -1 = 0 là mệnh đề sai, vậy câu C sai.

Câu D: Thay x = 0, y = 1 vào phương trình x + 3y = 0 ta có 0 + 3. 1 = 3 = 0 là mệnh đề sai, vậy câu D sai.

Vậy ta chọn phương án A.

Câu 7Chỉ ra câu sai trong các câu sau:

A. Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm;

B. Cặp số (2; 3) là nghiệm của bất phương trình 2x + 3y > 0;

C. Bất phương trình 2x + 5y < 1 có hệ số là a = 2; b = 5 và c = 1;

D. Bất phương trình bậc nhất hai ẩn có ít nhất một nghiệm.

Đáp án: C

Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm nên câu A và câu D đúng.

Thay x = 2, y = 3 vào bất phương trình 2x + 3y > 0 ta có 2. 2 + 3. 3 = 13 > 0 là mệnh đề đúng, vậy câu B đúng.

Bất phương trình 2x + 5y < 1 2x + 5y – 1 < 0 là bất phương trình bậc nhất hai ẩn có hệ số là a = 2; b = 5 và c = - 1. Vậy câu C sai.

Câu 8Cho bất phương trình 2x + 3y – 1 ≤ 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

A. Bất phương trình (1) chỉ có một nghiệm duy nhất;

B. Bất phương trình (1) vô nghiệm;

C. Bất phương trình (1) luôn có vô số nghiệm;

D. Bất phương trình (1) có tập nghiệm là S = {(x; y)|x , y }.

Đáp án: C

Xét cặp số (x; y) = (1; 1): Thay x = 1, y = 1 vào bất phương trình (1): 2x + 3y – 1 ≤ 0 ta được 2.1 + 3.1 – 1 = 4 > 0 là mệnh đề sai, do đó câu D là sai.

Trên mặt phẳng toạ độ, đường thẳng d: 2x + 3y – 1 = 0 chia mặt phẳng thành hai nửa mặt phẳng.

Xét điểm O(0; 0) không thuộc đường thẳng d. Ta thấy cặp số (0; 0) là nghiệm của bất phương trình x + 3y – 1 ≤ 0.

Vậy miền nghiệm của bất phương trình là nửa mặt phẳng bờ d (kể cả bờ d) chứa điểm O.

Do đó bất phương trình bậc nhất hai ẩn x + 3y – 1 ≤ 0 có vô số nghiệm, vậy câu C đúng.

Vậy ta chọn phương án C.

Câu 9Điểm nào sau đây thuộc miền nghiệm của bất phương trình bậc nhất hai ẩn x + 3y – 3 ≤ 0 trên mặt phẳng tọa độ Oxy?

A. A(4; 5);

B. B(2; 3);

C. C(-1; 1);

D. D(4; 6).

Đáp án: C

Thay x = 4; y = 5 vào bất phương trình đã cho ta có 4 + 3. 5 – 3 = 16 ≤ 0 là mệnh đề sai, vậy A không thuộc miền nghiệm bất phương trình đã cho.

Thay x = 2; y = 3 vào bất phương trình đã cho ta có 2 + 3. 3 – 3 = 8 ≤ 0 là mệnh đề sai, vậy B không thuộc miền nghiệm bất phương trình đã cho.

Thay x = -1; y = 1 vào bất phương trình đã cho ta có -1 + 3. 1 – 3 = -1 ≤ 0 là mệnh đề đúng, vậy C thuộc miền nghiệm bất phương trình đã cho.

Thay x = 4; y = 6 vào bất phương trình đã cho ta có 4 + 3. 6 – 3 = 19 ≤ 0 là mệnh đề sai, vậy D không thuộc miền nghiệm bất phương trình đã cho.

Vậy ta chọn phương án C.

Câu 10Điểm O(0; 0) thuộc miền nghiệm của bất phương trình nào?

A. 3x + 4y – 1 > 0;

B. 2x + 3y – 2 < 0;

C. x – y > 1;

D. x + 3y -1 > 0.

Đáp án: B

Thay x = 0; y = 0 vào bất phương trình 3x + 4y – 1 > 0 ta có: 3. 0 + 4. 0 – 1 = -1 > 0 là mệnh đề sai, vậy điểm O(0; 0) không thuộc miền nghiệm của bất phương trình 3x + 4y – 1 > 0. Do đó A là sai.

Thay x = 0; y = 0 vào bất phương trình 2x + 3y – 2 < 0 ta có: 2. 0 + 3. 0 – 2 = -2 < 0 là mệnh đề đúng, vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình 2x + 3y – 2 < 0. Do đó B là đúng.

Thay x = 0; y = 0 vào bất phương trình x – y > 1 ta có: 0 - 0 = 0 > 1 là mệnh đề sai, vậy điểm O(0; 0) không thuộc miền nghiệm của bất phương trình x – y > 1. Do đó C là sai.

Thay x = 0; y = 0 vào bất phương trình x + 3y -1 > 0 ta có: 0 + 3. 0 – 1 = -1 > 0 là mệnh đề sai, vậy điểm O(0; 0) không thuộc miền nghiệm của bất phương trình x + 3y -1 > 0. Do đó D là sai.

Vậy ta chọn phương án B.

Câu 11Miền nghiệm của bất phương trình x + y ≤ 2 là phần tô đậm trong hình vẽ của hình vẽ nào, trong các hình vẽ sau?

A.15 Bài tập Bất phương trình bậc nhất hai ẩn (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

B.15 Bài tập Bất phương trình bậc nhất hai ẩn (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

C.15 Bài tập Bất phương trình bậc nhất hai ẩn (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

D.15 Bài tập Bất phương trình bậc nhất hai ẩn (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

Đáp án: A

Xét đường thẳng x + y – 2 = 0 là đường thẳng đi qua hai điểm A(2; 0) và B(0; 2). Do đó ta loại phương án C và D.

Thay x = 0 và y = 0 vào bất phương trình ta có 0 + 0 = 0 ≤ 2 là mệnh đề đúng, vậy O(0; 0) thuộc miền nghiệm của bất phương trình đã cho.

Do vậy miền nghiệm của bất phương trình x + y ≤ 2 là nửa mặt phẳng (kể cả bờ là đường thẳng x + y = 2) và chứa điểm O(0; 0) (phần tô đậm).

Theo hình vẽ ta chọn phương án A.

Câu 12. Cho các khẳng định sau:

(I) 2x + y - 1 = 0 là bất phương trình bậc nhất hai ẩn.

(II) Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

(III) Điểm A(0; 1) thuộc miền nghiệm của bất phương trình x + 2y – 1 > 0.

(IV) Cặp số (x; y) = (3; 4) là nghiệm của bất phương trình x + y > 0.

Hỏi có bao nhiêu khẳng định đúng?

A. 1;

B. 2;

C. 3;

D. 4.

Đáp án: C

Xét câu (I): 2x + y - 1 = 0 là phương trình bậc nhất hai ẩn, do đó câu (I) sai.

Xét câu (II): Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm, do đó câu (II) đúng.

Xét câu (III): Thay x = 0, y = 1 vào bất phương trình x + 2y – 1 > 0 ta có 0 + 2. 1 – 1 = 1 > 0 là mệnh đề đúng, vậy điểm A(0; 1) thuộc miền nghiệm của bất phương trình x + 2y – 1 > 0, do đó câu (III) đúng.

Xét câu (IV): Thay x = 3, y = 4 vào bất phương trình x + y > 0 ta có 3 + 4 = 7 > 0 là mệnh đề đúng, vậy cặp (x; y) = (3; 4) là nghiệm của bất phương trình x + y > 0, do đó câu (IV) đúng.

Vậy có 3 câu đúng, ta chọn phương án C.

Câu 13Miền nghiệm của bất phương trình 2(x + 1) – 3(y + 2) > 3(2x + 2y) được biểu diễn phân cách bởi đường thẳng nào sau đây?

A. 4x + 9y + 4 = 0;

B. 2x – 3y – 4 =0;

C. 2x + 2y = 0;

D. x + 1 = y + 2.

Đáp án: A

Bất phương trình: 2(x + 1) – 3(y + 2) > 3(2x + 2y)

2x + 2 – 3y – 6 > 6x + 6y

6x + 6y < 2x – 3y – 4

6x + 6y – 2x + 3y + 4 < 0

4x + 9y + 4 < 0.

Vậy miền nghiệm của bất phương trình 2(x + 1) – 3(y + 2) > 3(2x + 2y) được biểu diễn phân cách bởi đường thẳng 4x + 9y + 4 = 0.

Câu 14: Cặp số (2; 3) không là nghiệm của bất phương trình nào sau đây?

A. x + y < 0;

B. x + y > 0;

C. x – y < 0;

D. 2x – y > 0

Đáp án: A

Thay x = 2, y = 3 vào bất phương trình x + y < 0 ta có 2 + 3 = 5 < 0 là mệnh đề sai, vậy cặp số (2; 3) không là nghiệm của bất phương trình x + y < 0. Do đó A là đúng.

Thay x = 2, y = 3 vào bất phương trình x + y > 0 ta có 2 + 3 = 5 > 0 là mệnh đề đúng, vậy cặp số (2; 3) là nghiệm của bất phương trình x + y > 0. Do đó B là sai.

Thay x = 2, y = 3 vào bất phương trình x - y < 0 ta có 2 - 3 = -1 < 0 là mệnh đề đúng, vậy cặp số (2; 3) là nghiệm của bất phương trình x - y < 0. Do đó C là sai.

Thay x = 2, y = 3 vào bất phương trình 2x - y > 0 ta có 2. 2 - 3 = 1 > 0 là mệnh đề đúng, vậy cặp số (2; 3) là nghiệm của bất phương trình 2x - y > 0. Do đó D là sai.

Vậy ta chọn phương án A.

Câu 15: Khi x = 2 và y ≥ 0 thì bất phương trình sau có mấy cặp nghiệm nguyên: 2x + y < 6?

A. 0;

B. 1;

C. 2;

D. 3.

Đáp án: C

Khi x = 2 thay vào bất phương trình ta có: 2. 2 + y < 6 y < 2.

Mà y ≥ 0 và y là số nguyên nên y {0; 1}.

Vậy bất phương trình có 2 cặp nghiệm nguyên là (x; y) {(2; 0); (2; 1)}.

Tài liệu có 17 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tài liệu cùng môn học

Lý thuyết Ôn tập chương 7 (Cánh Diều) Toán 7 Giang Tiêu đề (copy ở trên xuống) - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
679 47 14
Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
582 12 6
Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
659 12 9
Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
648 13 8
Tải xuống