Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 Bài 2. Hoán vị, chỉnh hợp và tổ hợp sách Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 2. Mời các bạn đón xem:
Toán 10 Chân trời sáng tạo Bài 2: Hoán vị, chỉnh hợp và tổ hợp
1. Hoán vị
Lời giải
Sử dụng quy tắc nhân:
Việc chọn 5 cầu thủ từ 11 cầu thủ có 5 công đoạn
Công đoạn 1: Chọn cầu thủ đầu tiên, có 11 cách chọn
Công đoạn 2: Chọn cầu thủ thứ hai, có 10 cách chọn
Công đoạn 3: Chọn cầu thủ thứ ba, có 9 cách chọn
Công đoạn 4: Chọn cầu thủ thứ tư, có 8 cách chọn
Công đoạn 5: Chọn cầu thủ thứ năm, có 7 cách chọn
Vậy số cách chọn 5 cầu thủ từ 11 cầu thủ khác nhau là (cách)
Cách này chỉ đúng khi các cầu thủ hoàn toàn khác nhau
Vậy nên bằng cách sử dụng quy tắc nhân không thể tìm ra câu trả lời
Áp dụng bài học
+) Mỗi cách chọn 5 cầu thủ từ 11 cầu thủ là một tổ hợp chập 5 của 11 phần tử. Do đó, số cách chọn 5 cầu thủ từ 11 cầu thủ là
(cách)
+) Mỗi cách sắp xếp 5 cầu thủ là một hoán vị của 5 cầu thủ. Do đó, số cách sắp xếp 5 cầu thủ là:
(cách)
a) Hãy liệt kê tất cả các kết quả bốc thăm có thể xảy ra
b) Có tất cả bao nhiêu kết quả như vậy? Ngoài cách đếm lần lượt từng kết quả có cách tìm nào nhanh hơn không?
Lời giải
a) Các trường hợp thuyết trình theo thứ tự 1, 2, 3 có thể xảy ra là:
ABC, ACB, BAC, BCA, CAB, CBA
b)
+) Từ câu a) ta thấy có tất cả 6 kết quả
+) Ngoài cách đếm ta có thể sử dụng quy tắc nhân để tìm kết quả
Kết quả bốc thăm thuyết trình gồm 3 công đoạn
Công đoạn 1: Bốc thăm xác định đội trình bày đầu tiên, có thể xảy ra 3 kết quả (A, B hoặc C)
Công đoạn 2: Bốc thăm xác định đội trình bày thứ 2, có thể xảy ra 2 kết quả (trừ 1 đội đã thuyết trình đầu tiên
Công đoạn 3: Đội trình bày cuối cùng chỉ có thể duy nhất là đội còn lại
Áp dụng quy tắc nhân, ta tìm được số kết quả có thể xảy ra là:
(cách)
Phương pháp giải:
Sử dụng hoán vị của các chỗ ngồi
Lời giải
Mỗi cách sắp xếp 6 bạn vào 6 chiếc ghế trống là hoán vị của 6 chiếc ghế. Do đó, số cách sắp xếp chỗ ngồi cho các thành viên trong nhóm là
(cách)
Phương pháp giải:
Sử dụng hoán vị của các chỗ ngồi
Lời giải
Mỗi khả năng về thứ hạng của các đội bóng trong mùa giải là hoán vị của các đội bóng tham gia. Do đó, số khả năng về thứ hạng của các đội bóng trong mùa giải là
(cách)
2. Chỉnh hợp
a) Hãy chỉ ra ít nhất 4 cách chọn và cắm cờ để báo 4 tín hiệu khác nhau
b) Bằng cách này, có thể báo nhiều nhất bao nhiêu tín hiệu khác nhau?
Phương pháp giải:
a) Chọn bất kì 3 lá cờ trong đó và sắp xếp chúng ở các vị trí khác nhau
b) Sử dụng quy tắc nhân
Lời giải
a) Chọn 3 cờ đỏ, trắng và xanh ta có 3 cách cắm để có 4 tín hiệu khác nhau là: ĐTX, ĐXT, TĐX, TXĐ
b) Việc cắm cờ để báo tín hiệu trên bao gồm 3 công đoạn
Công đoạn 1: Chọn cờ để cắm vào vị trí thứ nhất, có 5 cách chọn trong 5 màu khác nhau
Công đoạn 2: Chọn cờ để cắm vào vị trí thứ 2, có 4 cách chọn trong 4 màu còn lại
Công đoạn 3: Chọn cờ để cắm vào vị trí cuối cùng, có 3 cách chọn trong 3 màu còn lại
Áp dụng quy tắc nhân, ta có số cách cắm cờ để báo tín hiệu nhiều nhất là:
(cách)
a) Có thể lập được bao nhiêu số như vậy?
b) Trong các số đó có bao nhiêu số lẻ?
Phương pháp giải:
a) Sử dụng chỉnh hợp: chọn 3 chữ số từ 7 chữ số đã cho và sắp xếp chúng
b) Bước 1: Chọn chữ số cuối cùng là 1 số lẻ
Bước 2: Sử dụng chỉnh hợp chọn 2 chữ số từ 7 chữ số đã cho và sắp xếp chúng cho 2 vị trí chữ số hàng trăm và hàng chục
Bước 3: Sử dụng quy tắc nhân
Lời giải
a) Mỗi số có 3 chữ số đôi một khác nhau lập được từ 7 chữ số đã cho là một chỉnh hợp chập 3 của 7 chữ số. Do đó, số các số lập được là
(số)
b) Việc lập ra được một số lẻ phải qua 2 công đoạn
Công đoạn 1: Chọn chữ số hàng đơn vị là chữ số lẻ, có 4 cách chọn (1; 3; 5 hoặc 7)
Công đoạn 2: Chọn 2 chữ số bất kì trong 6 chữ số còn lại và sắp xếp chúng cho vị trí chữ số hàng trăm và hàng chục, mỗi số như vậy là một chỉnh hợp chập 2 của 6 phần tử, nên số các số được lập ra là:
(cách)
Áp dụng quy tắc nhân, ta có số các số có 3 chữ số lập được từ 7 chữ số đã cho là số lẻ là:
(số)
3. Tổ hợp
a) Hãy liệt kê tất cả các cách Lan có thể chọn 3 cuốn từ 4 cuốn sách. Có tất cả bao nhiêu cách?
b) Lan dự định đọc lần lượt từng cuốn. Lan có bao nhiêu cách sắp xếp thứ tự 3 cuốn đã chọn?
c) Lan có bao nhiêu cách chọn 3 cuốn sách từ 4 cuốn sách và sắp xếp theo thứ tự để đọc lần lượt từng cuốn một?
Lời giải
a) Các cách Lan có thể chọn 3 cuốn từ 4 cuốn sách Lan có là:
ABC, ABD, ACD, BCD
Có tất cả 4 cách chọn 3 cuốn sách trong số 4 cuốn sách Lan có để mang về quê
b) Mỗi cách sắp xếp thứ tự 3 cuốn sách đã chọn là một hoán vị của 3 cuốn sách, từ đó số cách sắp xếp 3 cuốn sách là số hoán vị của 3 cuốn sách:
(cách)
c) Mỗi cách chọn 3 cuốn sách từ 4 cuốn sách và sắp xếp theo thứ tự để đọc lần lượt từng cuốn một là một chỉnh hợp chập 3 của 4 phần tử, từ đó số cách chọn và sắp xếp 3 cuốn sách và sắp xếp chúng là:
(cách)
Thực hành 3 trang 31 Toán 10 Tập 2: Tính:
a)
b)
c)
Phương pháp giải:
Sử dụng công thức
Lời giải
a)
b)
c)
a) Nội dung này có tất cả bao nhiêu trận đấu?
b) Sau giải đấu, ba đội có thành tích tốt nhất sẽ được chọn đi thi đấu cấp lên trường. Có bao nhiêu khả năng có thể xảy ra về ba đội được chọn đi thi đấu cấp lên trường?
Phương pháp giải:
a) Số trận đấu là tổ hợp chập 2 của 7
b) Số khả năng là tổ hợp chập 3 của 7
Lời giải
a) Các đội thi đấu vòng tròn một lượt và mỗi lượt đấu sẽ có 2 đội đấu với nhau, nên số trận đấu sẽ là số cách chọn ra 2 đội từ 7 đội, mỗi cách chọn 2 đội từ 7 đội là một tổ hợp chập 2 của 7, từ đó có tất cả số trận đấu là:
(trận)
b) Mỗi khả năng ba đội được chọn đi thi đấu cấp liên trường là một tổ hợp chập 3 của 7 đội, từ đó số khả năng có thể xảy ra của 3 đội đi thi cấp liên trường là
Vận dụng 2 trang 31 Toán 10 Tập 2: Cho 6 điểm cùng nằm trên một đường tròn như hình 8
a) Có bao nhiêu đoạn thẳng có điểm đầu mút thuộc các điểm đã cho?
b) Có bao nhiêu tam giác có đỉnh thuộc các điểm đã cho?
Phương pháp giải:
a) Tính tổ hợp chập 2 của 6
b) Tính tổ hợp chập 3 của 6
Lời giải
a) Một đoạn thẳng được tạo bởi 2 điểm bất kì
Nên để có một đoạn thẳng có điểm mút thuộc các điểm đã cho thì ta chọn 2 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 2 điểm từ 6 điểm đã cho là một tổ hợp chập 2 của 6, từ đó số đoạn thẳng có điểm đầu mút thuộc các điểm đã cho được tạo ra là:
(đoạn thẳng)
b) Mỗi tam giác được tạo bởi 3 điểm không thẳng hàng, nên để có một tam giác mà các đỉnh của nó là các điểm đã cho thì ta chọn 3 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 3 điểm từ 6 điểm là một tổ hợp chập 3 của 6, từ đó số tam giác có đỉnh thuộc các điểm đã cho là:
(tam giác)
4. Tính số các hoán vị, chỉnh hợp, tổ hợp bằng máy tính cầm tay
Thực hành 5 trang 32 Toán 10 Tập 2: Sử dụng máy tính cầm tay, tính giá trị các biểu thức sau:
a)
b)
c)
Lời giải
a) Để tính ta ấn liên tiếp các phím
Thì nhận được kết quả là
b) Để tính thì ta ấn liên tiếp các phím
Thì ta nhận được kết quả là 495
c) Để tính thì ta ấn liên tiếp các phím
Thì ta được kết quả là 1150.
Bài tập
Bài 1 trang 32 Toán 10 Tập 2: Cần xếp một nhóm 5 học sinh ngồi vào một dãy 5 chiếc ghế
a) Có bao nhiêu cách sắp xếp?
b) Nếu bạn Nga (một thành viên trong nhóm) nhất định muốn ngồi vào chiếc ghế ngoài cùng bên trái, thì có bao nhiêu cách sắp xếp?
Phương pháp giải
a) Tính hoán vị của 5 bạn học sinh
b) Tính hoán vị của 4 bạn học sinh
Lời giải
a) Mỗi cách sắp xếp 5 bạn học sinh vào 5 chiếc ghế là một hoán vị của 5 bạn học sinh. Do đó, số cách sắp xếp 5 bạn học sinh ngồi vào 5 cái ghế là hoán vị là:
(cách)
b) Khi bạn Nga nhất định ngồi vào chiếc ghế ngoài cùng bên trái, thì số cách sắp xếp là số cách sắp xếp 4 bạn còn lại vào 4 chiếc ghế, mỗi cách như vậy là một hoán vị của 4 bạn học sinh. Do đó, số cách sắp xếp là:
(cách)
a) 1; 2; 3; 4; 5; 6
b) 0; 1; 2; 3; 4; 5
Phương pháp giải
a) Tính chỉnh hợp chập 4 của 6
b) Bước 1: Chọn một chữ số làm chữ số hàng nghìn (khác 0)
Bước 2: Chọn 3 chữ số còn lại và sắp xếp chúng
Bước 3: Áp dụng quy tắc nhân
Lời giải
a) Mỗi số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là cách chọn 4 chữ số và sắp xếp chúng, mỗi cách chọn như vậy là một chỉnh hợp chập 4 của 6 phần tử. Do đó, số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là:
(số)
b) Việc lập một số có 4 chữ số từ 6 chữ số 0; 1; 2; 3; 4; 5 bao gồm 2 công đoạn
Công đoạn 1: Chọn 1 chữ số khác 0 làm chữ số hàng nghìn, có 5 cách chọn (1; 2; 3; 4 hoặc 5)
Công đoạn 2: Chọn 3 chữ số từ 5 chữ số còn lại (trừ chữ số đã chọn làm chữ số hàng nghìn) và sắp xếp chúng, mỗi cách như vậy là một chỉnh hợp chập 3 của 5 phần tử. Do đó, số cách chọn 3 chữ số từ 5 chữ số còn lại và sắp xếp chúng là:
(cách)
Áp dụng quy tắc nhân, ta có số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là :
(số)
a) 3 bạn được chọn bất kỳ
b) 3 bạn gồm 2 nam và 1 nữ
Phương pháp giải
a) Tính tổ hợp chập 3 của 9
b) Bước 1: Chọn 2 bạn nam từ 4 bạn nam đã cho
Bước 2: Chọn 1 bạn nữ từ 5 bạn đã cho
Bước 3: Áp dụng quy tắc nhân
Lời giải
a) Mỗi cách chọn 3 bạn từ 9 bạn trong tổ một đi trực nhật là một tổ hợp chập 3 của 9. Do đó, số cách cử 3 bạn bất kì đi trực nhật là:
(cách)
b) Mỗi cách chọn 3 bạn gồm 2 nam và 1 nữ đi trực nhật gồm 2 công đoạn:
Công đoạn 1: Chọn 2 bạn nam
Mỗi cách chọn 2 bạn nam từ 4 bạn nam đã cho là một tổ hợp chập 2 của 4. Do đó, số cách chọn 2 bạn nam từ 4 bạn nam đã cho là: (cách)
Công đoạn 2: Chọn 1 bạn nữa trong 5 bạn đã cho, có 5 cách
Áp dụng quy tắc nhân, ta có số các cử 3 bạn đi trực nhật trong đó 2 nam và 1 nữ là:
(cách)
Phương pháp giải
Tính chỉnh hợp chập 4 của 8
Lời giải
Mỗi kết quả bầu ủy ban như trên là mỗi kết quả chọn 4 người trong 8 người và sắp xếp 4 người đó vào 4 vị trí chủ tịch, phó chủ tịch, thư ký và ủy viên, nên mỗi kết quả có thể xảy ra là một chỉnh hợp chập 4 của 8 phần tử. Do đó, số khả năng có thể xảy ra về kết quả bầu ủy ban là:
(khả năng)
Phương pháp giải
Bước 1: Chọn 3 bạn để hỗ trợ đi lại
Bước 2: Chọn 2 bạn để hỗ trợ tắm rửa
Bước 3: Chọn 2 bạn hỗ trợ ăn uống
Bước 4: Áp dụng quy tắc nhân
Lời giải
Việc phân công các bạn tình nguyện làm các việc trên gồm 3 công đoạn
Công đoạn 1: Chọn 3 bạn để hỗ trợ đi lại, mỗi cách chọn 3 bạn từ nhóm 7 bạn để làm công việc này là một tổ hợp chập 3 của 7 phần tử. Do đó, số cách chọn 3 bạn làm công việc hỗ trợ đi lại là:
(cách)
Công đoạn 2: Chọn 2 bạn để hỗ trợ tắm rửa, mỗi cách chọn 2 bạn từ nhóm 4 bạn còn lại để làm công việc này là một tổ hợp chập 2 của 4 phần tử. Do đó, số cách chọn 2 bạn làm công việc hỗ trợ tắm rửa là:
(cách)
Công đoạn 3: Chọn 2 bạn để hỗ trợ ăn uống từ 2 bạn cuối cùng, có 1 cách duy nhất
Áp dụng quy tắc nhân, ta có số cách phân công các bạn trong nhóm làm công việc trên là:
(cách)
Phương pháp giải
Bước 1: Chọn 2 đường thẳng song song trong 4 đường
Bước 2: Chọn 2 đường thẳng song song từ 5 đường kia
Bước 3: Áp dụng quy tắc nhân
Lời giải
Ta thấy rằng, cứ 2 đường thẳng song song cắt 2 đường thẳng song song khác thì tạo thành một hình bình hành
Do đó, hình bình hành tạo thành được xác định qua 2 công đoạn
Công đoạn 1: Chọn 2 đường thẳng song song với nhau trong 4 đường thẳng, mỗi cách chọn 2 đường thẳng từ 4 đường là một tổ hợp chập 2 của 4. Do đó, số cách chọn 2 đường thẳng từ 4 đường thẳng là:
Công đoạn 2: Chọn 2 đường thẳng song song với nhau trong 5 đường thẳng bị cắt bởi 2 đường kia, mỗi cách chọn 2 đường thẳng từ 5 đường là một tổ hợp chập 2 của 5. Do đó, số cách chọn 2 đường thẳng từ 5 đường thẳng là:
Áp dụng quy tắc nhân, ta có số hình bình hành được tạo thành là:
(hình bình hành)
Phương pháp giải
Tính chỉnh hợp chập 2 của 14
Lời giải
Mỗi trận đấu gồm 2 đội từ 14 đội và trên sân nhà hay sân đối thủ, nên mỗi trận đấu là một cách chọn 2 đội và sắp xếp chúng. Do đó, mỗi trận đấu là một chỉnh hợp chập 2 của 14 phần tử. Vậy số trận đấu có thể xảy ra là:
(trận).
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.