Với giải Câu hỏi trang 32 Toán 10 Tập 2 Chân trời sáng tạo trong Bài 2: Hoán vị, chỉnh vị và tổ hợpgiúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Toán 10 Chân trời sáng tạo trang 32 Bài 2: Hoán vị, chỉnh vị và tổ hợp
Thực hành 5 trang 32 Toán 10 Tập 2: Sử dụng máy tính cầm tay, tính giá trị các biểu thức sau:
a)
b)
c)
Lời giải
a) Để tính ta ấn liên tiếp các phím
Thì nhận được kết quả là
b) Để tính thì ta ấn liên tiếp các phím
Thì ta nhận được kết quả là 495
c) Để tính thì ta ấn liên tiếp các phím
Thì ta được kết quả là 1150.
Bài tập
Bài 1 trang 32 Toán 10 Tập 2: Cần xếp một nhóm 5 học sinh ngồi vào một dãy 5 chiếc ghế
a) Có bao nhiêu cách sắp xếp?
b) Nếu bạn Nga (một thành viên trong nhóm) nhất định muốn ngồi vào chiếc ghế ngoài cùng bên trái, thì có bao nhiêu cách sắp xếp?
Phương pháp giải
a) Tính hoán vị của 5 bạn học sinh
b) Tính hoán vị của 4 bạn học sinh
Lời giải
a) Mỗi cách sắp xếp 5 bạn học sinh vào 5 chiếc ghế là một hoán vị của 5 bạn học sinh. Do đó, số cách sắp xếp 5 bạn học sinh ngồi vào 5 cái ghế là hoán vị là:
(cách)
b) Khi bạn Nga nhất định ngồi vào chiếc ghế ngoài cùng bên trái, thì số cách sắp xếp là số cách sắp xếp 4 bạn còn lại vào 4 chiếc ghế, mỗi cách như vậy là một hoán vị của 4 bạn học sinh. Do đó, số cách sắp xếp là:
(cách)
a) 1; 2; 3; 4; 5; 6
b) 0; 1; 2; 3; 4; 5
Phương pháp giải
a) Tính chỉnh hợp chập 4 của 6
b) Bước 1: Chọn một chữ số làm chữ số hàng nghìn (khác 0)
Bước 2: Chọn 3 chữ số còn lại và sắp xếp chúng
Bước 3: Áp dụng quy tắc nhân
Lời giải
a) Mỗi số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là cách chọn 4 chữ số và sắp xếp chúng, mỗi cách chọn như vậy là một chỉnh hợp chập 4 của 6 phần tử. Do đó, số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là:
(số)
b) Việc lập một số có 4 chữ số từ 6 chữ số 0; 1; 2; 3; 4; 5 bao gồm 2 công đoạn
Công đoạn 1: Chọn 1 chữ số khác 0 làm chữ số hàng nghìn, có 5 cách chọn (1; 2; 3; 4 hoặc 5)
Công đoạn 2: Chọn 3 chữ số từ 5 chữ số còn lại (trừ chữ số đã chọn làm chữ số hàng nghìn) và sắp xếp chúng, mỗi cách như vậy là một chỉnh hợp chập 3 của 5 phần tử. Do đó, số cách chọn 3 chữ số từ 5 chữ số còn lại và sắp xếp chúng là:
(cách)
Áp dụng quy tắc nhân, ta có số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là :
(số)
a) 3 bạn được chọn bất kỳ
b) 3 bạn gồm 2 nam và 1 nữ
Phương pháp giải
a) Tính tổ hợp chập 3 của 9
b) Bước 1: Chọn 2 bạn nam từ 4 bạn nam đã cho
Bước 2: Chọn 1 bạn nữ từ 5 bạn đã cho
Bước 3: Áp dụng quy tắc nhân
Lời giải
a) Mỗi cách chọn 3 bạn từ 9 bạn trong tổ một đi trực nhật là một tổ hợp chập 3 của 9. Do đó, số cách cử 3 bạn bất kì đi trực nhật là:
(cách)
b) Mỗi cách chọn 3 bạn gồm 2 nam và 1 nữ đi trực nhật gồm 2 công đoạn:
Công đoạn 1: Chọn 2 bạn nam
Mỗi cách chọn 2 bạn nam từ 4 bạn nam đã cho là một tổ hợp chập 2 của 4. Do đó, số cách chọn 2 bạn nam từ 4 bạn nam đã cho là: (cách)
Công đoạn 2: Chọn 1 bạn nữa trong 5 bạn đã cho, có 5 cách
Áp dụng quy tắc nhân, ta có số các cử 3 bạn đi trực nhật trong đó 2 nam và 1 nữ là:
(cách)
Phương pháp giải
Tính chỉnh hợp chập 4 của 8
Lời giải
Mỗi kết quả bầu ủy ban như trên là mỗi kết quả chọn 4 người trong 8 người và sắp xếp 4 người đó vào 4 vị trí chủ tịch, phó chủ tịch, thư ký và ủy viên, nên mỗi kết quả có thể xảy ra là một chỉnh hợp chập 4 của 8 phần tử. Do đó, số khả năng có thể xảy ra về kết quả bầu ủy ban là:
(khả năng)
Phương pháp giải
Bước 1: Chọn 3 bạn để hỗ trợ đi lại
Bước 2: Chọn 2 bạn để hỗ trợ tắm rửa
Bước 3: Chọn 2 bạn hỗ trợ ăn uống
Bước 4: Áp dụng quy tắc nhân
Lời giải
Việc phân công các bạn tình nguyện làm các việc trên gồm 3 công đoạn
Công đoạn 1: Chọn 3 bạn để hỗ trợ đi lại, mỗi cách chọn 3 bạn từ nhóm 7 bạn để làm công việc này là một tổ hợp chập 3 của 7 phần tử. Do đó, số cách chọn 3 bạn làm công việc hỗ trợ đi lại là:
(cách)
Công đoạn 2: Chọn 2 bạn để hỗ trợ tắm rửa, mỗi cách chọn 2 bạn từ nhóm 4 bạn còn lại để làm công việc này là một tổ hợp chập 2 của 4 phần tử. Do đó, số cách chọn 2 bạn làm công việc hỗ trợ tắm rửa là:
(cách)
Công đoạn 3: Chọn 2 bạn để hỗ trợ ăn uống từ 2 bạn cuối cùng, có 1 cách duy nhất
Áp dụng quy tắc nhân, ta có số cách phân công các bạn trong nhóm làm công việc trên là:
(cách)
Phương pháp giải
Bước 1: Chọn 2 đường thẳng song song trong 4 đường
Bước 2: Chọn 2 đường thẳng song song từ 5 đường kia
Bước 3: Áp dụng quy tắc nhân
Lời giải
Ta thấy rằng, cứ 2 đường thẳng song song cắt 2 đường thẳng song song khác thì tạo thành một hình bình hành
Do đó, hình bình hành tạo thành được xác định qua 2 công đoạn
Công đoạn 1: Chọn 2 đường thẳng song song với nhau trong 4 đường thẳng, mỗi cách chọn 2 đường thẳng từ 4 đường là một tổ hợp chập 2 của 4. Do đó, số cách chọn 2 đường thẳng từ 4 đường thẳng là:
Công đoạn 2: Chọn 2 đường thẳng song song với nhau trong 5 đường thẳng bị cắt bởi 2 đường kia, mỗi cách chọn 2 đường thẳng từ 5 đường là một tổ hợp chập 2 của 5. Do đó, số cách chọn 2 đường thẳng từ 5 đường thẳng là:
Áp dụng quy tắc nhân, ta có số hình bình hành được tạo thành là:
(hình bình hành)
Phương pháp giải
Tính chỉnh hợp chập 2 của 14
Lời giải
Mỗi trận đấu gồm 2 đội từ 14 đội và trên sân nhà hay sân đối thủ, nên mỗi trận đấu là một cách chọn 2 đội và sắp xếp chúng. Do đó, mỗi trận đấu là một chỉnh hợp chập 2 của 14 phần tử. Vậy số trận đấu có thể xảy ra là:
(trận).
Xem thêm các bài giải Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 3 trang 31 Toán 10 Tập 2: Tính...
Vận dụng 2 trang 31 Toán 10 Tập 2: Cho 6 điểm cùng nằm trên một đường tròn như hình 8...
Thực hành 5 trang 32 Toán 10 Tập 2: Sử dụng máy tính cầm tay, tính giá trị các biểu thức sau...
Bài 1 trang 32 Toán 10 Tập 2: Cần xếp một nhóm 5 học sinh ngồi vào một dãy 5 chiếc ghế...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.