Toptailieu biên soạn và giới thiệu lời giải Toán 11 (Kết nối tri thức) Bài 19: Lôgarit hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi SGK Toán 11 Bài 19 từ đó học tốt môn Toán 11,
Toán 11 (Kết nối tri thức) Bài 19: Lôgarit
A = 100 ∙ (1 + 0,06)n (triệu đồng).
Hỏi sau ít nhất bao nhiêu năm, tổng số tiền bác An thu được không dưới 150 triệu đồng?
Lời giải:
Sau bài học, ta giải quyết được bài toán như sau:
Ta có: A = 100 ∙ (1 + 0,06)n = 100 ∙ 1,06n.
Với A = 150, ta có: 100 ∙ 1,06n = 150 hay 1,06n = 1,5, tức là n = log1,06 1,5 ≈ 6,96.
Vì gửi tiết kiệm kì hạn 12 tháng (tức là 1 năm) nên n phải là số nguyên. Do đó ta chọn n = 7.
Vậy sau ít nhất 7 năm thì bác An nhận được số tiền ít nhất là 150 triệu đồng.
1. Khái niệm Lôgarit
HĐ1 trang 10 Toán 11 Tập 2: Nhận biết khái niệm lôgarit
Lời giải:
a) 2x = 8 ⇔ 2x = 23 ⇔ x = 3.
b) .
c) .
Luyện tập 1 trang 11 Toán 11 Tập 2: Tính:
Lời giải:
a) .
b) .
2. Tính chất của Lôgarit
HĐ2 trang 11 Toán 11 Tập 2: Nhận biết quy tắc tính lôgarit
Cho M = 25, N = 23. Tính và so sánh:
Lời giải:
a) Ta có log2(MN) = log2(25 ∙ 23) = log2(25 + 3) = log228 = 8
và log2M + log2N = log225 + log223 = 5 + 3 = 8.
Vậy log2(MN) = log2M + log2N.
b) Ta có
và log2M – log2N = log225 – log223 = 5 – 3 = 2.
Vậy = log2M – log2N.
Luyện tập 2 trang 11 Toán 11 Tập 2: Rút gọn biểu thức:
A = log2(x3 – x) – log2(x + 1) – log2(x – 1) (x > 1).
Lời giải:
Với x > 1, ta có
A = log2(x3 – x) – log2(x + 1) – log2(x – 1)
=
=
= .
HĐ3 trang 11 Toán 11 Tập 2: Xây dựng công thức đổi cơ số của lôgarit
a) Đặt y = logaM, tính M theo y;
Lời giải:
a) Đặt y = logaM, theo định nghĩa về lôgarit, ta suy ra M = ay.
b) Lấy lôgarit theo cơ số b cả hai vế của M = ay ta được
logbM = logbay ⇔ logbM = y logba .
Luyện tập 3 trang 12 Toán 11 Tập 2: Không dùng máy tính cầm tay, hãy tính .
Lời giải:
Ta có .
3. Lôgarit thập phân và Loogarit tự nhiên
Vận dụng trang 14 Toán 11 Tập 2: Cô Hương gửi tiết kiệm 100 triệu đồng với lãi suất 6% một năm.
Lời giải:
a) Số tiền cô Hương thu được (cả vốn lẫn lãi) sau 1 năm nếu lãi suất được tính theo hình thức lãi kép kì hạn 12 tháng là
100 ∙ (1 + 0,06) = 106 (triệu đồng).
Số tiền cô Hương thu được (cả vốn lẫn lãi) sau 1 năm nếu lãi suất được tính theo hình thức lãi kép kì hạn 1 tháng là
(triệu đồng).
Số tiền cô Hương thu được (cả vốn lẫn lãi) sau 1 năm nếu lãi suất được tính theo hình thức lãi kép liên tục là
100 ∙ e0,06 . 1 ≈ 106,18 (triệu đồng).
b) Gọi t (năm) là thời gian cần thiết để cô Hương thu được số tiền (cả vốn lẫn lãi) là 150 triệu đồng nếu gửi theo thể thức lãi kép liên tục.
Ta có: 150 = 100 ∙ e0,06t. Suy ra 0,06t = ln1,5 hay t ≈ 6,8 năm.
Bài tập
Bài 6.9 trang 14 Toán 11 Tập 2: Tính:
Lời giải:
a) log22– 13 = – 13.
b) = .
c) log816 – log82 = .
d) log26 ∙ log68 = .
Lời giải:
a)
.
b)
.
Bài 6.11 trang 15 Toán 11 Tập 2: Rút gọn các biểu thức sau:
Lời giải:
a)
.
b) .
Bài 6.12 trang 15 Toán 11 Tập 2: Tính giá trị của các biểu thức sau:
a) A = log23 ∙ log34 ∙ log45 ∙ log56 ∙ log67 ∙ log78;
b) B = log22 ∙ log24 ∙∙∙ log22n.
Lời giải:
a) Áp dụng công thức đổi cơ số, ta có:
A = log23 ∙ log34 ∙ log45 ∙ log56 ∙ log67 ∙ log78
.
b) B = log22 ∙ log24 ∙∙∙ log22n
= log22 ∙ log222 ∙∙∙ log22n
= 1 ∙ 2 ∙ … ∙ n = n!.
Tính áp suất không khí ở đỉnh Everest có độ cao 8 850 m so với mực nước biển.
Lời giải:
Ta có đỉnh Everest có độ cao 8 850 m so với mực nước biển nên a = 8 850.
Khi đó 15 500(5 – log p) = 8 850 .
Vậy áp suất không khí ở đỉnh Everest xấp xỉ 26 855,44 Pa.
Xác định mức cường độ âm của mỗi âm sau:
a) Cuộc trò chuyện bình thường có cường độ I = 10– 7 W/m2.
b) Giao thông thành phố đông đúc có cường độ I = 10– 3 W/m2.
Lời giải:
a) Mức cường độ âm của cuộc trò chuyện bình thường có cường độ I = 10– 7 W/m2 là
.
b) Mức cường độ âm của giao thông thành phố đông đúc có cường độ I = 10– 3 W/m2 là
.
Xem thêm Lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 18: Lũy thừa với số mũ thực
Bài 20: Hàm số mũ và hàm số lôgarit
Bài 21: Phương trình, bất phương trình mũ và lôgarit
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.