Luyện tập 7 trang 87 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

167

Với giải Luyện tập 7 trang 87 SGK Toán 11 Cánh diều chi tiết trong Toán 11 (Cánh diều) Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Luyện tập 7 trang 87 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Luyện tập 7 trang 87 Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABCD) và đáy ABCD là hình chữ nhật. Chứng minh rằng các tam giác SBC và SCD là các tam giác vuông.

Lời giải:

Luyện tập 7 trang 87 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Ta có: SA ⊥ (ABCD), BC ⊂ (ABCD) và DC ⊂ (ABCD).

Suy ra: SA ⊥ BC và SA ⊥ DC.

Vì ABCD là hình chữ nhật nên BC ⊥ AB và DC ⊥ AD.

· Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB).

Suy ra BC ⊥ (SAB).

Mà SB ⊂ (SAB) nên BC ⊥ SB hay tam giác SBC vuông tại B.

· Ta có: DC ⊥ AD, DC ⊥ SA và AD ∩ SA = A trong (SAD).

Suy ra DC ⊥ (SAD).

Mà SD ⊂ (SAD) nên DC ⊥ SD hay tam giác SCD vuông tại D.

Đánh giá

0

0 đánh giá