Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

212

Với giải Bài 3 trang 88 SGK Toán 11 Cánh diều chi tiết trong Toán 11 (Cánh diều) Bài 2: Đường thẳng vuông góc với mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Bài 3 trang 88 Toán 11 Tập 2: Cho tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của các tam giác BCD, ACD (Hình 31). Chứng minh rằng:

a) CD ⊥ (ABH);

b) CD ⊥ (ABK);

c) Ba đường thẳng AK, BH, CD cùng đi qua một điểm.

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Bài 3 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: AB ⊥ (BCD), CD ⊂ (BCD) nên AB ⊥ CD.

Do H là trực tâm của tam giác BCD nên BH ⊥ CD.

Ta có: CD ⊥ AB, CD ⊥ BH và AB ∩ BH = B trong (ABH).

Từ đó ta có: CD ⊥ (ABH).

b) Do K là trực tâm của tam giác ACD nên AK ⊥ CD.

Ta có: CD ⊥ AB, CD ⊥ AK và AB ∩ AK = A trong (ABK).

Từ đó ta có: CD ⊥ (ABK).

c) Theo tính chất “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước” nên có duy nhất một mặt phẳng đi qua điểm A và vuông góc với CD.

Mà CD ⊥ (ABH), CD ⊥ (ABK).

Suy ra (ABH) ≡ (ABK).

Do: H là trực tâm của tam giác BCD nên BH giao với CD tại một điểm I;

K là trực tâm của tam giác ACD nên AK giao với CD tại một điểm I’.

Mà CD cắt (ABHK) tại một điểm.

Do đó I và I’ trùng nhau hay AK, BH, CD cùng đi qua một điểm.

Đánh giá

0

0 đánh giá