Toptailieu.vn biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 2.
SBT Toán 11 (Cánh diều) Bài 2: Đường thẳng vuông góc với mặt phẳng
SBT Toán 11 trang 94 Tập 2 (Cánh Diều)
A. Mặt phẳng (P) chứa hai đường thẳng a, b thoả mãn a, b cùng vuông góc với đường thẳng c;
B. Mặt phẳng (P) chứa một đường thẳng vuông góc với đường thẳng c;
C. Mặt phẳng (P) chứa ít nhất hai đường thẳng vuông góc với đường thẳng c;
D. Mặt phẳng (P) chứa hai đường thẳng cắt nhau a, b thoả mãn a, b cùng vuông góc với đường thẳng c.
Lời giải:
Đáp án đúng là: D
Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.
A. 0;
B. 1;
C. 2;
D. Vô số.
Lời giải:
Đáp án đúng là: A
Có duy nhất một mặt phẳng đi qua A và vuông góc với AB.
Có duy nhất một mặt phẳng đi qua A và vuông góc với AC.
Mặt phẳng đi qua A và vuông góc với cả AB, AC khi và chỉ khi 3 điểm A, B, C thẳng hàng (vô lý vì 3 điểm A, B, C tạo thành tam giác ABC).
Vậy không tồn tại mặt phẳng đi qua A và vuông góc với cả AB, AC.
A. 0;
B. 1;
C. 2;
D. Vô số.
Lời giải:
Đáp án đúng là: B
Có duy nhất một mặt phẳng (P) đi qua điểm I và vuông góc với đường thẳng a.
Do a // b nên b ⊥ (P).
Vậy có duy nhất một mặt phẳng (P) đi qua điểm I và vuông góc với cả a, b.
A. a // b, b // (P);
B. a ⊥ b, b // (P);
C. a ⊥ b, b ⊥ (P);
D. a // b, b ⊥ (P).
Lời giải:
Đáp án đúng là: D
Từ hình vẽ ta thấy: a // b, b ⊥ (P).
(1): AB là hình chiếu của SB trên (ABC);
(2): SB là hình chiếu của SC trên (SAB);
(3): AC là hình chiếu của SC trên (ABC).
Số phát biểu đúng là:
A. 0;
B. 1;
C. 2;
D. 3.
Lời giải:
Đáp án đúng là: D
Do SA ⊥ (ABC) nên AB, AC lần lượt là hình chiếu của SB, SC trên (ABC).
Suy ra (1) và (3) đúng.
Do SA ⊥ (ABC) và BC ⊂ (ABC) nên SA ⊥ BC
Ta có: SA ⊥ BC; AB ⊥ BC;
SA ∩ AB = A trong (SAB).
Suy ra BC ⊥ (SAB).
Do đó SB là hình chiếu của SC trên (SAB) hay (2) đúng.
Vậy có 3 phát biểu đúng.
Lời giải:
Do AA’ ⊥ (ABC) nên AA’ ⊥ BC.
Ta có: BC ⊥ AA’; BC ⊥ AH;
AA’ ∩ AH = A trong (A’AH).
Suy ra: BC ⊥ (A’AH).
Mà A’H ⊂ (A’AH) nên BC ⊥ A’H.
Lời giải:
Gọi AN, CM là hai đường cao của tam giác ABC.
Khi đó trực tâm H của tam giác ABC là giao điểm của AN và CM.
Vì nên SA ⊥ SB, SA ⊥ SC.
⦁ Ta có: SA ⊥ SB, SA ⊥ SC;
SB ∩ SC = S trong (SBC).
Suy ra SA ⊥ (SBC). Do đó SA ⊥ BC.
⦁ Ta có: BC ⊥ AH, BC ⊥ SA (chứng minh trên);
SA ∩ AH = A trong (SAH).
Suy ra BC ⊥ (SAH). Do đó BC ⊥ SH.
Tương tự, ta có: AB ⊥ SH.
⦁ Ta có: AB ⊥ SH, BC ⊥ SH và AB ∩ BC = B trong (ABC).
Suy ra: SH ⊥ (ABC).
Lời giải:
Vì ABCD là hình bình hành nên O là trung điểm của AC và BD.
⦁ Xét tam giác SAC có SA = SC nên tam giác SAC cân tại S.
Mà SO là đường trung tuyến của tam giác SAC.
Suy ra: SO là đường cao của tam giác SAC hay SO ⊥ AC.
⦁ Xét tam giác SBD có SB = SD nên tam giác SBD cân tại S.
Mà SO là đường trung tuyến của tam giác SBD.
Suy ra: SO là đường cao của tam giác SBD hay SO ⊥ BD.
Ta có: SO ⊥ AC, SO ⊥ BD;
AC ∩ BD = O trong (ABCD).
Suy ra: SO ⊥ (ABCD).
SBT Toán 11 trang 95 Tập 2 (Cánh Diều)
a) BB’ ⊥ (A’B’C’D’);
b) BD ⊥ A’C.
Lời giải:
a) Vì ABCD.A’B’C’D’ là hình hộp nên AA’ // BB’.
Mà AA’ ⊥ (ABCD) nên BB’ ⊥ (ABCD).
Mặt khác: (ABCD) // (A’B’C’D’) (tính chất hình hộp).
Suy ra: BB’ ⊥ (A’B’C’D’).
b) Vì ABCD là hình thoi nên BD ⊥ AC.
Ta có: AA’ ⊥ (ABCD) suy ra AA’ ⊥ BD (vì BD ⊂ (ABCD)).
Ta có: BD ⊥ AA’, BD ⊥ AC và AA’ ∩ AC = A trong (A’AC).
Suy ra: BD ⊥ (A’AC).
Từ đó ta có: BD ⊥ A’C.
Lời giải:
Vì nên ta có OH ⊥ HA, OH ⊥ HB mà HA và HB cắt nhau tại H trong (HAB) nên OH ⊥ (HAB).
Vì nên ta có OH ⊥ HB, OH ⊥ HC mà HB và HC cắt nhau tại H trong (HBC) nên OH ⊥ (HBC).
Ta thấy: (HAB) và (HBC) cùng đi qua H và vuông góc với OH nên (HAB) ≡ (HBC).
Hay (HAB) ≡ (HBC) ≡ (ABC).
Suy ra: H thuộc mặt phẳng (ABC).
Lời giải:
Gọi O’ là hình chiếu của S trên (ABC). Khi đó, SO’ ⊥ (ABC).
Mà O’A, O’B, O’C đều nằm trên (ABC) nên SO’ ⊥ O’A, SO’ ⊥ O’B, SO’ ⊥ O’C.
Xét tam giác SO’A và tam giác SO’B có:
SA = SB (gt);
SO’ chung
Suy ra ∆SO’A = ∆SO’B (cạnh huyền – cạnh góc vuông)
Do đó: O’A = O’B (hai cạnh tương ứng)
Tương tự: ∆SO’A = ∆SO’C, suy ra O’A = O’C.
Từ đó ta có: O’A = O’B = O’C hay O’ là tâm đường tròn ngoại tiếp tam giác ABC.
Suy ra: O ≡ O’, mà SO’ ⊥ (ABC).
Vậy SO ⊥ (ABC).
Lời giải:
Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC.
Khi đó OA = OB = OC.
⦁ Trường hợp 1: Ba điểm M, N, P đều không thuộc mặt phẳng (ABC).
Xét hình chóp M.ABC có MA = MB = MC nên theo kết quả của Bài 16, trang 95, Sách bài tập Toán 11, Tập hai ta có: MO ⊥ (ABC)
Tương tự, từ NA = NB = NC, PA = PB = PC ta cũng có NO ⊥ (ABC), PO ⊥ (ABC).
Ta thấy: MO, NO, PO cùng đi qua điểm O và vuông góc với mặt phẳng (ABC).
Do đó ba đường thẳng MO, NO, PO trùng nhau hay M, N, P thẳng hàng.
⦁ Trường hợp 2: Trong ba điểm M, N, P có một điểm nằm trên (ABC).
Mà MA = MB = MC, NA = NB = NC, PA = PB = PC nên không mất tính tổng quát ta giả sử điểm M nằm trên (ABC).
Ta có MA = MB = MC, OA = OB = OC và M, O cùng nằm trong mp (ABC)
Suy ra: M ≡ O.
Tương tự trường hợp 1, từ NA = NB = NC, PA = PB = PC nên cũng ta có:
NO ⊥ (ABC), PO ⊥ (ABC).
Ta thấy: NO, PO cùng đi qua điểm O và vuông góc với mặt phẳng (ABC).
Do đó hai đường thẳng NO, PO trùng nhau hay O, N, P thẳng hàng hay M, N, P thẳng hàng.
Vậy M, N, P thẳng hàng.
Bài 18 trang 95 SBT Toán 11 Tập 2: Cho hình tứ diện đều ABCD. Chứng minh AB ⊥ CD.
Lời giải:
Gọi M là trung điểm của CD.
Vì ABCD là tứ diện đều nên hai tam giác ACD và BCD là các tam giác đều.
Suy ra AM ⊥ CD, BM ⊥ CD.
Ta có: AM ⊥ CD, BM ⊥ CD và AM ∩ BM = M trong (ABM).
Suy ra CD ⊥ (ABM).
Mà AB ⊂ (ABM) nên CD ⊥ AB hay AB ⊥ CD.
a) AD ⊥ CH;
b*) HK ⊥ (ACD).
Lời giải:
a) Vì AB ⊥ (BCD), CH ⊂ (BCD) nên AB ⊥ CH hay CH ⊥ AB.
Do H là trực tâm của tam giác BCD nên CH ⊥ BD.
Ta có: CH ⊥ AB, CH ⊥ BD và AB ∩ BD = B trong (ABD).
Suy ra CH ⊥ (ABD).
Mà AD ⊂ (ABD) nên CH ⊥ AD hay AD ⊥ CH.
b) Trong (BCD), gọi I = BH ∩ CD mà H là trực tâm của tam giác BCD nên BI ⊥ CD.
Lại có: AB ⊥ (BCD), CD ⊂ (BCD) nên AB ⊥ CD.
⦁ Ta có: CD ⊥ BI, CD ⊥ AB và BI ∩ AB = B trong (ABI).
Suy ra CD ⊥ (ABI).
Mà HK ⊂ (ABI) nên CD ⊥ HK. (1)
⦁ Vì K là trực tâm của tam giác ACD nên CK ⊥ AD.
Ta có: AD ⊥ CH (theo câu a), AD ⊥ CK và CH ∩ CK = C trong (CHK).
Suy ra: AD ⊥ (CHK).
Mà HK ⊂ (CHK) nên AD ⊥ HK. (2)
Từ (1), (2) kết hợp với CD ∩ AD = D trong (ACD) nên ta có HK ⊥ (ACD).
Lời giải:
Gọi H, K, I lần lượt là trung điểm của AB, BC, CA.
Vì M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA nên ta có:
.
Theo định lý Thalès: MN // HK, MP // HI.
Mà HK ⊂ (ABC), IH ⊂ (ABC).
Suy ra: MN // (ABC), MP // (ABC).
Trong (MNP) có: MN ∩ MP = M, MN // (ABC), MP // (ABC).
Suy ra (MNP) // (ABC).
Lại có SA ⊥ (ABC) nên SA ⊥ (MNP).
Lời giải:
Gọi O là hình chiếu của S trên (ABCD). Khi đó SO ⊥ (ABCD).
Mà OA, OB, OC, OD đều nằm trên (ABCD) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC, SO ⊥ OD.
Xét tam giác SOA và tam giác SOB có:
SA = SB (gt);
SO chung
Suy ra ∆SOA = ∆SOB (cạnh huyền – cạnh góc vuông)
Do đó: OA = OB (hai cạnh tương ứng)
Tương tự: ∆SOB = ∆SOC = ∆SOD nên OB = OC = OD.
Từ đó ta có: OA = OB = OC = OD hay O là tâm đường tròn đi qua bốn đỉnh của tứ giác ABCD.
Lời giải:
Gọi H là hình chiếu của A trên (P).
Ta có: A là điểm cố định nên H cố định và HC là hình chiếu của AC trên (P).
Vì H là hình chiếu của A trên (P) nên AH ⊥ (P).
Mà BC ⊂ (P) nên AH ⊥ BC.
Ta có: BC ⊥ AH, BC ⊥ AC (vì ) và AH ∩ AC = A trong (AHC).
Suy ra BC ⊥ (AHC) nên BC ⊥ HC.
Do đó C chuyển động trên đường tròn đường kính HB cố định nằm trong (P).
Lời giải:
Vì nên A, B, C không thẳng hàng.
Ta có: AB ⊥ (P), HC ⊂ (P) nên AB ⊥ HC.
Áp dụng hệ thức lượng trong tam giác ACB vuông tại C ta có:
HC2 = HA.HB = 4.9 = 36, suy ra HC = 6 (cm).
Ta thấy khi C chuyển động trong mặt phẳng (P) thoả mãn thì C luôn cách H (với H là điểm cố định) một khoảng không đổi HC = 6 cm.
Vậy C thuộc đường tròn tâm H bán kính 6 cm trong (P).
Xem thêm các bài SBT Toán 11 Cánh Diều hay, chi tiết khác:
Bài 18 trang 95 SBT Toán 11 Tập 2: Cho hình tứ diện đều ABCD. Chứng minh AB ⊥ CD.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.