Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC). Trong mặt phẳng (ABC), gọi H là hình chiếu của A trên BC

107

Với Giải Bài 11 trang 94 SBT Toán 11 Tập 2 trong Bài 2: Đường thẳng vuông góc với mặt phẳng Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC). Trong mặt phẳng (ABC), gọi H là hình chiếu của A trên BC

Bài 11 trang 94 SBT Toán 11 Tập 2Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC). Trong mặt phẳng (ABC), gọi H là hình chiếu của A trên BC. Chứng minh rằng BC ⊥ A’H.

Lời giải:

Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC). Trong mặt phẳng (ABC), gọi H là hình chiếu của A trên BC

Do AA’ ⊥ (ABC) nên AA’ ⊥ BC.

Ta có: BC ⊥ AA’; BC ⊥ AH;

AA’ ∩ AH = A trong (A’AH).

Suy ra: BC ⊥ (A’AH).

Mà A’H ⊂ (A’AH) nên BC ⊥ A’H.

Đánh giá

0

0 đánh giá