Bài 7 trang 95 Toán 8 Tập 2 | Cánh Diều Giải Toán lớp 8

204

Với giải Bài 7 trang 95 Toán 8 Tập 2 Cánh Diều chi tiết trong Bài tập cuối chương 8 trang 94 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

 

  Bài 7 trang 95 Toán 8 Tập 2 | Cánh Diều Giải Toán lớp 8

Bài 7 trang 95 Toán 8 Tập 2: Tính các độ dài x, y, z, t ở các hình 104a, 104b, 104c:

Bài 7 trang 95 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Lời giải:

+ Xét hình 104a:

Bài 7 trang 95 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Theo hình vẽ ta có: AMN^=ABC^ mà hai góc ở vị trí đồng vị suy ra MN // BC.

Xét ∆ABC với MN // BC, ta có AMMB=ANNC (định lí Thalès)

Hay x2=63 nên x=263=4.

Vậy x = 4.

+ Xét hình 104b:

Bài 7 trang 95 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Theo hình vẽ ta có: GHD^=DEF^ mà hai góc ở vị trí so le trong nên GH // EF.

Xét ∆DEF với GH // EF, ta có GHEF=GDDF=HDDE (hệ quả của định lí Thalès)

Hay z7,8=y9=26

Suy ra z=7,826=2,6 và y=926=3.

Vậy y = 3 và z = 2,6.

+ Xét hình 104c:

Bài 7 trang 95 Toán 8 Tập 2 Cánh diều | Giải Toán 8

Theo hình vẽ ta có: JIK^=LIK^ nên IK là đường phân giác của góc JIL.

Xét ∆IJL có IK là đường phân giác của góc JIL nên KJKL=IJIL (tính chất đường phân giác)

Hay t3=2,43,6, suy ra t=32,43,6=2.

Vậy t = 2.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá