Toptailieu biên soạn và giới thiệu giải sách bài tập Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 7 Bài 14.
Giải SBT Toán 7 Bài 14 (Kết nối tri thức): Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Lời giải:
*) Hình a:
Xét ∆ABC và ∆DCB có:
AB = CD (giả thiết)
BC chung
(giả thiết)
Do đó, ∆ABC = ∆DCB (c – g – c).
*) Hình b:
Xét ∆EFH và ∆EGH có:
EF = EG (giả thiết)
EH chung
(giả thiết)
Do đó, ∆EFH = ∆EGH (c – g – c)
*) Hình c:
Xét ∆MON và ∆POQ có:
MO = PO (giả thiết)
NO = QO (giả thiết)
(hai góc đối đỉnh)
Do đó, ∆MON = ∆POQ (c – g – c).
Bài 4.22 trang 61 sách bài tập Toán 7: Cho hai tam giác ABC và DEF bất kỳ, thỏa mãn AB = FE, BC = DF, . Những câu nào dưới đây đúng?
a) ∆ABC = ∆DFE.
b) ∆BAC = ∆EFD.
c) ∆CAB = ∆EFD.
d) ∆ABC = ∆EFD.
Lời giải:
Vì nên đỉnh B tương ứng với đỉnh F;
Vì AB = FE mà đỉnh B ứng với đỉnh F thì đỉnh A ứng với đỉnh E.
Suy ra đỉnh C ứng với đỉnh D.
Xét tam giác ABC và tam giác EFD có:
AB = FE;
BC = DF;
.
Do đó, ∆ABC = ∆EFD (c – g – c).
Vậy chỉ có đáp án d) đúng.
Bài 4.23 trang 61 sách bài tập Toán 7: Cho hai tam giác ABC và MNP bất kì, thỏa mãn và BC = PN. Những câu nào dưới đây đúng?
a) ∆ABC = ∆PNM.
b) ∆ABC = ∆NPM.
c) ∆ABC = ∆MPN.
d) ∆ABC = ∆MNP.
Lời giải:
Vì nên đỉnh B tương ứng với đỉnh N;
Vì nên đỉnh C tương ứng với đỉnh P.
Suy ra đỉnh A tương ứng với đỉnh M.
Xét tam giác ABC và tam giác MNP có:
BC = PN
Do đó, ∆ABC = ∆MNP (g – c – g).
Trong bốn đáp án chỉ có đáp án d chính xác.
Bài 4.24 trang 61 sách bài tập Toán 7: Cho các điểm A, B, C, D như Hình 4.24, biết rằng AC = BD và .
Chứng minh rằng AD = BC.
Lời giải:
Xét ∆ABC và ∆BAD có:
AC = BD (giả thiết)
AB chung
(giả thiết)
Do đó, ∆ABC = ∆BAD (c – g – c)
Suy ra, BC = AD (hai cạnh tương ứng).
Bài 4.25 trang 61 sách bài tập Toán 7: Cho các điểm A, B, C, D như Hình 4.25, biết rằng và . Chứng minh rằng ∆ABC = ∆ABD.
Lời giải:
Xét tam giác ABC có:
(1)
Xét tam giác ABD có:
(2)
Mà (3)
Từ (1), (2), (3) ta suy ra .
Xét ∆ABC và ∆ABD có:
(chứng minh trên)
AB chung
(giả thiết)
Do đó, ∆ABC = ∆ABD (g – c – g).
Bài 4.26 trang 61 sách bài tập Toán 7:Cho các điểm A, B, C, D, E như Hình 4.26, biết rằng AB = CD,. Chứng minh rằng:
a) E là trung điểm của các đoạn thẳng AC và BD.
b) ∆ACD = ∆CAB.
c) AD song song với BC.
Lời giải:
a) Xét tam giác ABE có:
(1)
Xét tam giác CDE có:
(2)
Mà (giả thiết); (hai góc đối đỉnh) (3)
Từ (1), (2), (3) ta suy ra .
Xét ∆ABE và ∆CDE có:
(chứng minh trên)
AB = CD (giả thiết)
(giả thiết)
Do đó, ∆ABE = ∆CDE (g – c – g).
Suy ra, AE = CE; BE = DE (các cặp cạnh tương ứng)
Vì AE = CE và E nằm giữa A và C nên E là trung điểm của AC;
Vì BE = DE và B nằm giữa D và B nên E là trung điểm của BD.
b) Xét ∆ACD và ∆CAB có:
CD = AB (giả thiết)
AC chung
(giả thiết)
Do đó, ∆ACD = ∆CAB (c – g – c).
c) Vì ∆ACD = ∆CAB nên (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên AD song song với BC.
Bài 4.27 trang 62 sách bài tập Toán 7:Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, . Chứng minh rằng:
a) .
b) ∆AED = ∆BEC.
c) AB song song với DC.
Lời giải:
a) Xét tam giác AED có:
(1)
Xét tam giác BEC có:
(2)
Mà (hai góc đối đỉnh) (3)
Từ (1); (2); (3) suy ra, hay (điều phải chứng minh).
b) Xét ∆AED và ∆BEC ta có:
(chứng minh trên)
(giả thiết)
AD = CB (giả thiết)
Do đó, ∆AED = ∆BEC (g – c – g).
c) Vì ∆AED = ∆BEC nên AE = BE; ED = EC.
Ta có: AC = AE + EC; BD = BE + ED.
Do đó, AC = BD.
Xét ∆ABD và ∆BAC ta có:
AC = BD (chứng minh trên)
AB chung
AD = CB (giả thiết)
Do đó, ∆ABD = ∆BAC (c – c – c)
Suy ra (hai góc tương ứng)
Xét tam giác AEB có:
Do đó, (vì do )
Suy ra (4)
Xét ∆ACD và ∆BDC ta có:
AC = BD (chứng minh trên)
CD chung
AD = CB (giả thiết)
Do đó, ∆ACD = ∆BDC (c – c – c)
Suy ra (hai góc tương ứng)
Xét tam giác DEC có:
Do đó, (vì do = )
Suy ra (5)
Lại có, là hai góc đối đỉnh nên (6)
Từ (4); (5); (6) suy ra = hay .
Mà hai góc này lại ở vị trí so le trong nên AB // CD.
Bài 4.28 trang 62 sách bài tập Toán 7: Cho tam giác ABC bằng tam giác DEF (H.4.28).
a) Gọi M và N lần lượt là trung điểm các đoạn thẳng BC và EF. Chứng minh rằng AM = DN.
b) Trên hai cạnh AC và DF lấy hai điểm P và Q sao cho BP, EQ lần lượt là phân giác của các góc và . Chứng minh rằng: BP = EQ.
Lời giải:
a) Vì ∆ABC = ∆DEF nên
Vì M là trung điểm của BC nên BM = MC = .
Vì N là trung điểm của EF nên EN = NF = .
Mà BC = EF (chứng minh trên) nên BM = EN.
Xét ∆ABM và ∆DEN ta có:
BM = EN (chứng minh trên)
AB = DE (chứng minh trên)
(do chứng minh trên)
Do đó, ∆ABM = ∆DEN (c – g – c).
Suy ra, AM = DN (hai cạnh tương ứng).
b) Vì BP là tia phân giác của góc nên =
Vì EQ là tia phân giác của góc nên
Mà = nên = .
Xét ∆PBC và ∆QEF ta có:
BC = EF (chứng minh trên)
(chứng minh trên)
(do chứng minh trên)
Do đó, ∆PBC = ∆QEF (g – c – g)
Suy ra, BP = EQ (hai cạnh tương ứng).
Bài 4.29 trang 62 sách bài tập Toán 7: Gọi M và N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng ∆ABC = ∆DEF.
Lời giải:
Vì M là trung điểm của BC nên BM = MC =
Vì N là trung điểm của EF nên EN = NF =
Mà BC = EF (giả thiết) nên BM = EN.
Xét ∆ABM và ∆DEN ta có:
AB = DE (giả thiết)
BM = EN (chứng minh trên)
AM = DN (giả thiết)
Do đó, ∆ABM = ∆DEN (c – c – c).
Suy ra, (hai góc tương ứng) hay .
Xét ∆ABC và ∆DEF ta có:
AB = DE (giả thiết)
BC = EF (giả thiết)
(chứng minh trên)
Do đó, ∆ABC = ∆DEF (c – g – c).
Bài 4.30 trang 62 sách bài tập Toán 7: Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OB = OC = OD như Hình 4.30. Chứng minh ABCD là hình chữ nhật.
Lời giải:
Xét ∆OAB và ∆OCD ta có:
OA = OC (giả thiết)
(hai góc đối đỉnh)
OB = OD (giả thiết)
Do đó, ∆OAB = ∆OCD (c – g – c).
Suy ra AB = DC và hay .
Mà hai góc này ở vị trí so le trong, do đó AB // DC (1).
Xét ∆OAD và ∆OCB ta có:
OA = OC (giả thiết)
(hai góc đối đỉnh)
OD = OB (giả thiết)
Do đó, ∆OAD = ∆OCB (c – g – c).
Suy ra AD = BC và hay .
Mà hai góc này ở vị trí so le trong nên AD // BC (2).
Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành.
Ta có: OA = OC = OB = OD, AC = OA + OC, BD = OB + OD.
Do đó, AC = BD.
Xét tam giác ABD và tam giác DCA có:
AB = DC (chứng minh trên)
AD: cạnh chung
BD = AC (chứng minh trên)
Do đó, ∆ABD = ∆DCA (c – c – c).
Suy ra .
Lại có: (do AB // DC, hai góc ở vị trí trong cùng phía)
Do đó: .
Vậy hình bình hành ABCD có một góc vuông nên nó là hình chữ nhật.
Xem thêm các bài giải SBT Toán lớp 7 Kết nối với tri thức hay, chi tiết khác:
Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 15: Các trường hợp bằng nhau của tam giác vuông
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.