Với giải Bài 5 trang 40 Chuyên đề Toán 10 Chân trời sáng tạo chi tiết trong Bài tập cuối chuyên đề 2 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:
Giải bài tập Chuyên đề Toán lớp 10 Bài tập cuối chuyên đề 2
Bài 5 trang 40 Chuyên đề Toán 10: Với một bình rỗng có dung tích 2 l, một bạn học sinh thực hiện thí nghiệm theo các bước như sau
Bước 1: Rót 1 l nước vào bình, rồi rót đi một nửa lượng nước trong bình.
Bước 2: Rót 1 l nước vào bình, rồi lại rót đi một nửa lượng nước trong bình.
Cứ như vậy, thực hiện các bước 3,4,...
Kí hiệu an là lượng nước có trong bình sau bước n(n∈ ℕ*).
a) Tính a1, a2, a3. Từ đó dự đoán công thức tính an với n∈ ℕ*
b) Chứng minh công thức trên bằng phương pháp quy nạp toán học.
Lời giải:
a) Sau bước 1 thì trong bình có l nước, do đó a1 =
Sau bước 2 thì trong bình có: l nước, do đó a2 =
Sau bước 3 thì trong bình có: l nước, do đó a2 =
Ta có thể dự đoán an =
b) Ta chứng minh bằng quy nạp:
Bước 1. Với n = 1, ta có a1 = Do đó công thức đúng với n = 1.
Bước 2. Giả sử công thức đúng với n = k ≥ 1, nghĩa là có: ak =
Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:
ak + 1 =
Thật vậy:
ak là lượng nước có trong bình sau bước thứ k thì lượng nước có trong bình sau bước thứ k + 1 là:
ak + 1 =
Vậy công thức đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, công thức đúng với mọi số tự nhiên n ≥ 1.
Xem thêm các bài giải Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 40 Chuyên đề Toán 10: Chứng minh rằng các đẳng thức sau đúng với mọi n∈ ℕ*
Bài 2 trang 40 Chuyên đề Toán 10: Chứng minh rằng với mọi n∈ ℕ*:
Bài 3 trang 40 Chuyên đề Toán 10: Chứng minh rằng 8n ≥ n3 với mọi n∈ ℕ*
Bài 4 trang 40 Chuyên đề Toán 10: Chứng minh rằng bất đẳng thức đúng với mọi n∈ ℕ*
Bài 6 trang 40 Chuyên đề Toán 10: Tìm hệ số của x3 trong khai triển:
Bài 7 trang 40 Chuyên đề Toán 10: Tìm hệ số của x5 trong khai triển (2x + 3)(x – 2)6
Bài 8 trang 40 Chuyên đề Toán 10:
Bài 10 trang 40 Chuyên đề Toán 10: Chứng minh rằng các đẳng thức sau đúng với mọi n∈ ℕ*
Xem thêm các bài giải Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.