Tìm k sao cho phương trình x^2 + y^2 – 6x + 2ky + 2k + 12 = 0

403

Với Giải SBT Toán 10 Tập 2 trong Bài 5: Phương trình đường thẳng Sách bài tập Toán lớp 10 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10.

Tìm k sao cho phương trình x^2 + y^2 – 6x + 2ky + 2k + 12 = 0

Bài 53 trang 89 SBT Toán 10Tìm k sao cho phương trình: x2 + y2 – 6x + 2ky + 2k + 12 = 0 là phương trình đường tròn.

Lời giải:

Ta biến đổi như sau:

x2 + y2 – 6x + 2ky + 2k + 12 = 0

⇔ (x – 3)2 + (y + k)2 = k2 – 2k – 3

Để phương trình trên là phương trình đường tròn thì

k2 – 2k – 3>0Tìm k sao cho phương trình x^2 + y^2 – 6x + 2ky + 2k + 12 = 0

Vậy k < – 1 hoặc k > 3.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều với cuộc sống hay, chi tiết khác:

Bài 47 trang 88 SBT Toán 10Phương trình nào sau đây không là phương trình đường tròn?

Bài 48 trang 88 SBT Toán 10Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x+8)2+(y-10)2=36. Tọa độ tâm I của (C) là:

Bài 49 trang 88 SBT Toán 10Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x-1)2+(y+2)2=4. Bán kính của (C) bằng:

Bài 50 trang 89 SBT Toán 10Trong mặt phẳng tọa độ Oxy, đường tròn tâm I(- 4; 2) bán kính R = 9 có phương trình là:

Bài 51 trang 89 SBT Toán 10Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 3)2 + (y – 4)2 = 25.

Bài 52 trang 89 SBT Toán 10Trong mặt phẳng tọa độ Oxy, cho đường tròn (x – 6)2 + (y – 7)2 = 16.

Bài 54 trang 89 SBT Toán 10Viết phương trình đường tròn (C) trong mỗi trường hợp sau:

a) (C) có tâm I(- 6; 2) bán kính 7.

Bài 55 trang 89 SBT Toán 10Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C): (x+2)2+(y-3)2=4

Bài 56 trang 89 SBT Toán 10Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x+2)2+(y-4)2=25

Bài 57 trang 90 SBT Toán 10Trong mặt phẳng tọa độ Oxy, cho các đường thẳng: : x+y+1=0, : 3x+4y+20=0; 

Bài 58 trang 90 SBT Toán 10Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 1) và đường thẳng ∆: 3x + 4y + 3 = 0.

Đánh giá

0

0 đánh giá