Toán 10 Kết nối tri thức trang 38 Bài 6: Hệ thức lượng trong tam giác

272

Với giải Câu hỏi trang 38 Toán 10 Tập 1 Kết nối tri thức trong Bài 6: Hệ thức lượng trong tam giác học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Kết nối tri thức trang 38 Bài 6: Hệ thức lượng trong tam giác

Câu hỏi mở đầu trang 38 Toán lớp 10: Ngắm Tháp Rùa từ bờ, chỉ với những dụng cụ đơn giản, dễ chuẩn bị, ta cũng có thể xác định được khoảng cách từ vị trí đứng tới tháp rùa. Em có biết vì sao không?

Câu hỏi mở đầu trang 38 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 2)

Phương pháp giải:

Đánh dấu các vị trí, dùng thước thẳng để đo khảng cách và góc.

Lời giải:

Đặt cọc (vật cố định) tại vị trí đứng, kí hiệu là điểm A.

Di chuyển một đoạn d (m) đến vị trí B. Gọi C là vị trí của tháp Rùa.

Tại A và B xác định góc A và góc B của tam giác ABC.

Câu hỏi mở đầu trang 38 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Áp dụng định lí sin trong tam giác ABC ta có:

ACsinB=ABsinC

Mà AB=d;C^=180oαβ

AC=sinβdsin(180oαβ)

1. ĐỊNH LÍ COSIN

Hoạt động 1 trang 38 Toán lớp 10: Một tàu biển xuất phát từ cảng Vân Phong (Khánh Hòa) theo hướng đông với vận tốc 20km/h. Sau khi đi được 1 giờ, tàu chuyển sang hướng đông nam rồi giữ nguyên vận tốc và đi tiếp.

a) Hãy vẽ sơ đồ đường đi của tàu trong 1,5 giờ kể từ khi xuất phát (1km trên thực tế ứng với 1 cm trên bản vẽ).

b) Hãy đo trực tiếp trên bản vẽ và cho biết sau 1,5 giờ kể từ khi xuất phát, tàu cách cảng Vân Phong bao nhiêu kilomet (số đo gần đúng).

c) Nếu sau khi đi được 2 giờ, tàu chuyển sang hướng nam (thay vì hướng đông nam) thì có thể dùng định lí Pythagore (Pi-ta-go) để tính chính xác các số đo trong câu b hay không?

Phương pháp giải:

a) Bước 1: Xác định các hướng Đông, tây, nam, bắc. Giả sử tàu xuất phát từ điểm O.

Bước 2: Tính quãng đường đi theo từng hướng sau 1,5 giờ.

Bước 3: Vẽ sơ đồ đường đi

b) Bước 1: Đo khoảng cách từ điểm xuất phát tới tàu trên sơ đồ

Bước 2: Quy ra khoảng cách thực tế.

c) Bước 1: Vẽ sơ đồ đường đi.

Bước 2: Tính khoảng cách từ cảng tới tàu dựa vào định lí Pythagore.

Lời giải:

a) Giả sử tàu xuất phát từ điểm O như hình dưới.

 Hoạt động 1 trang 38 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống  (ảnh 2)

Trong 1 giờ, tàu di chuyển từ O đến A với quãng đường là: 20.1 =20 (km) tương ứng với 20 cm trên sơ đồ.

Trong 0,5 giờ tiếp theo, tàu di chuyển từ A đến B với quãng đường là: 20.0,5 = 10 (km) tương ứng với 10 cm trên sơ đồ.

b) Trên sơ đồ, khoảng cách từ cảng đến tàu là đoạn OB dài khoảng 28 cm

Do đó khoảng cách từ cảng đến tàu thực tế khoảng 28 km.

c) Nếu sau khi đi được 2 giờ, tàu chuyển sang hướng nam (thay vì hướng đông nam) thì sơ đồ đường đi của tàu như sau:

 Hoạt động 1 trang 38 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống  (ảnh 1)

Sau 2 giờ đầu, tàu đi từ O đến A, với quãng đường là 20.2 = 40 (km) tương ứng 40 cm trên sơ đồ.

Sau đó, tàu chuyển sang hướng nam, vị trí của tàu là điểm B.

Khi đó ta có thể tính chính xác khoảng cách từ cảng đến tàu, chính là đoạn OB (do tam giác OAB vuông tại A) dựa vào định lí Pythagore: OB=OA2+AB2

Hoạt động 2 trang 38 Toán lớp 10: Trong Hình 3.8, hãy thực hiện các bước sau để thiết lập công thức tính a theo b,c và giá trị lượng giác của góc A

a) Tính a2 theo BD2 và CD2

b) Tính a2 theo b, c và DA.

c) Tính DA theo c và cosA.

d) Chứng minh a2=b2+c22bccosA.

Phương pháp giải:

a) Áp dụng định lí Pythagore với tam giác BCD.

b) Bước 1: Tính BD theo DA và c (định lí Pythagore cho tam giác BDA)

Bước 2: Thay DC bởi DA + b.

Bước 3: Thế BD và DC ở trên vào biểu thức ở ý a)

c) Bước 1: Tính cosA theo cosα.

Bước 2: Tính DA theo c và cosα

Bước 3: Suy ra công thức tính DA theo c và cosA

d)

Lời giải:

a) Xét tam giác BDC vuông tại D, theo định lý Pythagore ta có:

a2=BD2+DC2  (1)

b) Xét tam giác vuông BDA ta có:

{BA2=BD2+DA2BD2=BA2DA2=c2DA2cosα=DAcDA=c.cosα

Lại có: DC = DA + AC = DA + b Thế vào (1)

a2=(c2DA2)+(DA+b)2   (2)

c) Xét tam giác vuông BDA ta có:

cosα=DAcDA=c.cosα

Mà cosα=cosA (do góc α và góc A bù nhau)

DA=c.cosA

d) Thế DA=c.cosA vào (2) ta được:

a2=[c2(c.cosA)2]+(c.cosA+b)2a2=(c2c2.cos2A)+(c2.cos2A2bc.cosA+b2)a2=c2c2.cos2A+c2.cos2A2bc.cosA+b2a2=b2+c22bc.cosA

Đánh giá

0

0 đánh giá