Toán 10 Cánh Diều trang 100: Bài tập cuối chương 4

359

Với giải Câu hỏi trang 100 Toán 10 Tập 1 Cánh Diều trong Bài tập cuối chương 4 học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Cánh Diều trang 100: Bài tập cuối chương 4

Bài 6 trang 100 Toán lớp 10 Tập 1: Để đo khoảng cách giữa hai vị trí M, N ở hai phía ốc đảo, người ta chọn vị trí O bên ngoài ốc đảo sao cho: O không thuộc đường thẳng MN; các khoảng cách OM, ON và góc MON là đo được (Hình 72). Sau khi đo, ta có OM = 200 m, ON = 500 m, MON^=135° .

Khoảng cách giữa hai vị trí M, N là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)? 

Để đo khoảng cách giữa hai vị trí M, N ở hai phía ốc đảo, người ta chọn vị trí O

Lời giải:

Ba vị trí O, M, N tạo thành ba đỉnh của tam giác. 

Tam giác OMN có OM = 200 m, ON = 500 m và MON^=135°

Áp dụng định lí côsin trong tam giác OMN ta có: 

MN2 = OM2 + ON2 – 2 . OM . ON . cosMON^

        = 2002 + 5002 – 2 . 200 . 500 . cos135°

≈ 431421 

Suy ra: MN ≈ 657 m.

Vậy khoảng cách giữa hai ví trí M, n khoảng 657 m.

Bài 7 trang 100 Toán lớp 10 Tập 1: Chứng minh:

a) Nếu ABCD là hình bình hành thì AB+AD+CE=AE với E là điểm bất kì; 

b) Nếu I là trung điểm của đoạn thẳng AB thì MA+MB+2IN=2MN với M, N là hai điểm bất kì; 

c) Nếu G là trọng tâm của tam giác ABC thì MA+MB+MC3MN=3NG với M, N là hai điểm bất kì. 

Lời giải:

a) 

Chứng minh: Nếu ABCD là hình bình hành thì vectơ AB + vectơ AD +vectơ CE = vectơ AE

Vì ABCD là hình bình hành nên AC=AB+AD

Với E là điểm bất kì ta có: 

AB+AD+CE=AC+CE=AE

Vậy AB+AD+CE=AE với E là điểm bất kì. 

b) 

Chứng minh: Nếu ABCD là hình bình hành thì vectơ AB + vectơ AD +vectơ CE = vectơ AE

Vì I là trung điểm của AB nên với điểm M bất kì ta có: MA+MB=2MI

Do đó, với điểm N bất kì, ta có: 

MA+MB+2IN=2MI+2IN=2MI+IN=2MN

Vậy MA+MB+2IN=2MN với M, N là hai điểm bất kì. 

c) 

Chứng minh: Nếu ABCD là hình bình hành thì vectơ AB + vectơ AD +vectơ CE = vectơ AE

Do G là trọng tâm của tam giác ABC nên với điểm M bất kì ta có: 

MA+MB+MC=3MG

Khi đó với điểm N bất kì ta có: 

MA+MB+MC3MN=3MG3MN=3MG+MN=3MG+NM=3NM+MG=3NG

Vậy MA+MB+MC3MN=3NG với M, N là hai điểm bất kì. 

Bài 8 trang 100 Toán lớp 10 Tập 1: Cho hình bình hành ABCD có AB = 4, AD = 6, BAD^=60° (Hình 73).

 

Cho hình bình hành ABCD có AB = 4, AD = 6, góc BAD = 60 độ (Hình 73)

a) Biểu thị các vectơ BD,  AC theo AB,  AD

b) Tính các tích vô hướng AB.AD,  AB.AC,  BD.AC

c) Tính độ dài các đường chéo BD, AC. 

Lời giải:

a) Ta có: BD=BA+AD=AB+AD

Do ABCD là hình bình hành nên AC=AB+AD

b) Ta có: AB.AD=AB.AD.cosAB,AD

=AB.AD.cosBAD^ = 4 . 6 . cos60° = 12. 

Do đó: AB.AD=12

Ta cũng có: AB.AC=AB.AB+AD

=AB2+AB.AD = AB2 + 12 = 42 + 12 = 28. 

Do đó: AB.AC=28

Lại có: BD.AC=AB+AD.AB+AD

=ADAB.AD+AB

=AD2AB2

= AD2 – AB2 = 62 – 42 = 20. 

Vậy BD.AC=20

c) Áp dụng định lí côsin trong tam giác ABD có: 

BD2 = AB2 + AD2 – 2 . AB . AD . cosA

        = 42 + 62 – 2 . 4 . 6 . cos 60° = 28

BD=28=27

Ta có:

AC=AB+ADAC2=AB+AD2

AC2=AB2+2.AB.AD+AD2

AC2=AB2+2AB.AD+AD2

Suy ra: AC2 = 42 + 2 . 12 + 62 = 76

AC=76=219

Bài 9 trang 100 Toán lớp 10 Tập 1: Hai lực F1,  F2 cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc F1,  F2=α làm cho vật di chuyển theo hướng từ O đến C (Hình 74). Lập công thức tính cường độ của hợp lực F làm cho vật di chuyển theo hướng từ O đến C (giả sử chỉ có đúng hai lực F1,  F2 làm cho vật di chuyển).

Hai lực vectơ F1, vectơ F2 cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc

Lời giải:

Ta thấy, AOBC là hình bình hành. 

Do đó: OC=OA+OB

Suy ra: F=F1+F2 (1).

Ta cần tính cường độ của hợp lực F hay chính là tính F

Từ (1) suy ra F2=F1+F22.

F2=F12+2.F1.F2+F22

F2=F12+2.F1.F2+F22 (2)

Ta lại có: F1.F2=F1.F2.cosF1,F2=F1.F2.cosα (3).

Từ (2) và (3) suy ra: F2=F12+2.F1.F2.cosα+F22=F1.F2.cosα

F=F12+2.F1.F2.cosα+F22=F1.F2.cosα.

Vậy công thức tính cường độ của hợp lực F làm cho vật di chuyển theo hướng từ O đến C là F=F12+2.F1.F2.cosα+F22.

 

 

Đánh giá

0

0 đánh giá