Với giải Bài 5 trang 120 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài tập cuối chương 4 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Bài 5 trang 120 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11
Bài 5 trang 120 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, BD. Điểm P thuộc cạnh AC sao cho PA = 2PC.
a) Xác định giao điểm E của đường thẳng MP với mặt phẳng (BCD).
b) Xác định giao điểm Q của đường thẳng CD với mặt phẳng (MNP).
c) Xác định giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP).
d) Gọi I là giao điểm của MQ và NP, G là trọng tâm của tam giác ABD. Chứng minh rằng C, I, G thẳng hàng.
Lời giải:
a)
Trong mp(ABC), kéo dài MP cắt BC tại E. Nối AE, DE.
Ta có: MP ∩ BC = {E};
BC ⊂ (BCD)
Do đó MP ∩ (BCD) = {E}.
b)
Nối NE, NE cắt CD tại Q.
Ta có: CD ∩ NE = {Q};
NE ⊂ (MNP)
Do đó CD ∩ (MNP) = {Q}.
c)
Ta có: P ∈ AC, mà AC ⊂ (ACD) nên P ∈ (ACD);
Mà P ∈ (MNP) nên P là giao điểm của (ACD) và (MNP).
Lại có Q ∈ CD và CD ⊂ (ACD) nên Q ∈ (ACD);
Mà Q ∈ (MNP) nên Q là giao điểm của (ACD) và (MNP).
Do đó PQ là giao tuyến của hai mặt phẳng (ACD) và (MNP).
d)
Do G là trọng tâm của tam giác ABD nên hai đường trung tuyến DM, AN của tam giác cùng đi qua G.
Ta có: G ∈ AN mà AN ⊂ (ANC) nên G ∈ (ANC);
G ∈ DM mà DM ⊂ (MDC) nên G ∈ (MDC).
Do đó G là giao điểm của hai mặt phẳng (ANC) và (MDC).
Lại có: C ∈ (ANC) và C ∈ (MDC) nên C cũng là giao điểm của hai mặt phẳng (ANC) và (MDC).
Vậy GC là giao tuyến của hai mặt phẳng (ANC) và (MDC).
Mặt khác, I là giao điểm của MQ và NP nên I ∈ MQ và I ∈ NP.
Vì I ∈ MQ mà MQ ⊂ (MDC) nên I ∈ (MDC)
Vì I ∈ NP mà NP ⊂ (ANC) nên I ∈ (ANC)
Do đó giao tuyến GC của hai mặt phẳng (ANC) và (MDC) đi qua điểm I.
Vậy ba điểm C, I, G thẳng hàng.
Bài 1 trang 120 Toán 11 Tập 1: Trong không gian, hai đường thẳng song song với nhau khi và chỉ khi:
Bài 3 trang 120 Toán 11 Tập 1: Trong không gian, đường thẳng song song với mặt phẳng khi và chỉ khi:
Bài 4 trang 120 Toán 11 Tập 1: Trong không gian, hai mặt phẳng song song với nhau khi và chỉ khi:
Xem thêm các bài giải sách giáo khoa Toán 11 Cánh Dều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.