Bài 10 trang 121 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

145

Với giải Bài 10 trang 121 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài tập cuối chương 4 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 10 trang 121 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11

Bài 10 trang 121 Toán 11 Tập 1: Một khối gỗ có các mặt đều là một phần của mặt phẳng với (ABCD) // (EFMH), CK // DH. Khối gỗ bị hỏng một góc (Hình 91). Bác thợ mộc muốn làm đẹp khối gỗ bằng cách cắt khối gỗ theo mặt phẳng (R) đi qua K và song song với mặt phẳng (ABCD).

Toán 11 (Cánh diều): Bài tập cuối chương 4 (ảnh 16)

a) Hãy giúp bác thợ mộc xác định giao tuyến của mặt phẳng (R) với các mặt của khối gỗ để cắt được chính xác.

b) Gọi I, J lần lượt là giao điểm DH, BF với mặt phẳng (R). Biết BF = 60 cm, DH = 75 cm, CK = 40 cm. Tính FJ.

Lời giải:

a)

Toán 11 (Cánh diều): Bài tập cuối chương 4 (ảnh 17)

Trong mp(CDHK), qua K vẽ đường thẳng song song với CD, cắt DH tại N.

Trong mp(BCKF), qua K vẽ đường thẳng song song với BC, cắt BF tại P.

Ta có: NK // CD, mà CD ⊂ (ACBD) nên NK // (ABCD).

           KP // BC, mà BC ⊂ (ACBD) nên KP // (ABCD).

           NK, KP cắt nhau tại K trong mp(NPK).

Do đó (NPK) // (ABCD).

Khi đó mp(R) qua K và song song với (ABCD) chính là mp(NPK).

Trong mp(ADHE), qua N vẽ đường thẳng song song với AD, cắt AE tại Q.

Khi đó mp(R) là mp(NKPQ).

Vậy: (NKPQ) ∩ (ADHE) = QN;

         (NKPQ) ∩ (CDHK) = NK;

         (NKPQ) ∩ (BCKF) = KP;

         (NKPQ) ∩ (ABFE) = PQ.

b)

Toán 11 (Cánh diều): Bài tập cuối chương 4 (ảnh 18)

Ta có: DH cắt NK tại N, mà NK ⊂ (R) nên giao điểm của DH và (R) là điểm N.

Theo bài, I là giao điểm của DH và (R) nên điểm I và điểm N trùng nhau.

Tương tự ta cũng có điểm J trùng với điểm P.

Ta có: (ABCD) // (EFMH) và (R) // (ABCD) nên (EFMH) // (R) // (ABCD).

Lại có, hai cát tuyến FB, HD cắt ba mặt phẳng song song (EFMH), (R), (ABCD) lần lượt tại F, J, B và H, I, D nên theo định lí Thalès ta có: FJHI=FBHD .

Mặt khác, trong mp(CDKH), tứ giác CDIK có CK // DI (do CK // DH) và IK // CD

Do đó CDIK là hình bình hành, suy ra DI = CK = 40 cm.

Khi đó HI = DH – DI = 75 – 40 = 35 (cm).

Vì vậy, từ FJHI=FBHD  ta có: FJ35=6075 , suy ra FJ=35.6075=28  (cm).

Vậy FJ = 28 cm.

Đánh giá

0

0 đánh giá