Với giải Bài 9 trang 121 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài tập cuối chương 4 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Bài 9 trang 121 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11
Bài 9 trang 121 Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AB, C’D’.
a) Chứng minh rằng (A’DN) // (B’CM).
b) Gọi E, F lần lượt là giao điểm của đường thẳng D’B với các mặt phẳng (A’DN), (B’CM). Chứng minh rằng D’E = BF = EF.
Lời giải:
a)
Ta có: (ADD’A’) // (CBC’B’);
(ADD’A’) ∩ (DCB’A’) = A’D;
(CBC’B’) ∩ (DCB’A’) = B’C.
Do đó A’D // B’C, mà B’C ⊂ (B’CM) nên A’D // (B’CM).
Tương tự: (ABB’A’) // (DCC’D’);
(ABB’A’) ∩ (DMB’N) = MB’;
(DCC’D’) ∩ (DMB’N) = DN.
Do đó MB’ // DN, mà MB’ ⊂ (B’CM) nên DN // (B’CM).
Ta có: A’D // (B’CM);
DN // (B’CM);
A’D, DN cắt nhau tại điểm D và cùng nằm trong mp(A’DN)
Do đó (A’DN) // (B’CM).
b)
• Trong mp(A’B’C’D’), gọi J là giao điểm của A’N và B’D’.
Trong mp(BDD’B’), D’B cắt DJ tại E.
Ta có: D’B ∩ DJ = {E} mà DJ ⊂ (A’DN) nên E là giao điểm của D’B và (A’DN).
Tương tự, trong mp(ABCD), gọi I là giao điểm của CM và BD.
Trong mp(BDD’B’), D’B cắt B’I tại F.
Ta có: D’B ∩ B’I = {F} mà B’I ⊂ (B’CM) nên F là giao điểm của D’B và (B’CM).
• Ta có: (A’DN) // (B’CM);
(A’DN) ∩ (BDD’B’) = DJ;
(B’CM) ∩ (BDD’B’) = B’I.
Do đó DJ // B’I.
Trong mp(BDD’B’), xét DBDE có IF // DE nên theo định lí Thalès ta có: (1)
Trong mp(ABCD), gọi O là giao điểm của hai đường chéo AC và BD trong hình bình hành ABCD. Khi đó O là trung điểm của AC, BD.
Xét ABC, hai đường trung tuyến BO, CM cắt nhau tại I nên I là trọng tâm của tam giác
Suy ra hay
Do đó (2)
Từ (1) và (2) suy ra
Suy ra hay .
Chứng minh tương tự ta cũng có
Suy ra hay
Do đó nên BF = D’E = EF.
Bài 1 trang 120 Toán 11 Tập 1: Trong không gian, hai đường thẳng song song với nhau khi và chỉ khi:
Bài 3 trang 120 Toán 11 Tập 1: Trong không gian, đường thẳng song song với mặt phẳng khi và chỉ khi:
Bài 4 trang 120 Toán 11 Tập 1: Trong không gian, hai mặt phẳng song song với nhau khi và chỉ khi:
Xem thêm các bài giải sách giáo khoa Toán 11 Cánh Dều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.