Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân

226

Với Giải Bài 2.48 trang 43 SBT Toán 11 Tập 1 trong Bài tập cuối chương 2 trang 40 Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân

Bài 2.48 trang 43 SBT Toán 11 Tập 1Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân thì ba số ấy bằng nhau.

Lời giải:

Gọi x, y lần lượt là số thứ nhất và số thứ ba trong ba số đó. 

Vì ba số theo thứ tự đó lập thành một cấp số cộng nên số thứ hai là x+y2

Khi đó, ba số cần tìm có dạng: x, x+y2, y.

Vì ba số này lập thành một cấp số nhân nên ta có

xy=x+y22⇔ 4xy = x2 + 2xy + y2 ⇔ x2 – 2xy + y2 = 0 ⇔ (x − y)2 = 0, tức là x = y.

Suy ra x+y2=x+x2=2x2=x.

Vậy ba số đó bằng nhau.

Đánh giá

0

0 đánh giá