Hãy tìm số đo α của góc lượng giác (Om, On), với ‒π ≤ α < π, biết một góc lượng giác cùng tia đầu Om

245

Với Giải Bài 4 trang 9 SBT Toán 11 Tập 1 trong Bài 1: Góc lượng giác Sách bài tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

 Hãy tìm số đo α của góc lượng giác (Om, On), với ‒π ≤ α < π, biết một góc lượng giác cùng tia đầu Om

Bài 4 trang 9 SBT Toán 11 Tập 1Hãy tìm số đo α của góc lượng giác (Om, On), với ‒π ≤ α < π, biết một góc lượng giác cùng tia đầu Om và tia cuối On có số đo là:

a) 36π5;          b) 75π14;                c) 39π8;                          d) 2023π.

Lời giải:

a) Số đo α của các góc lượng giác bất kì có cùng tia đầu Om và tia cuối On sai khác nhau một bội nguyên của 2π nên có dạng là α=36π5+k2πk

Ta có  ‒π ≤ α < π, suy ra 41π5k2π<π36π5, suy ra 4110k<3110.

Vì k ∈ ℤ nên k = ‒4.

Vậy α=36π5+4.2π=4π5.

b) Số đo α của các góc lượng giác bất kì có cùng tia đầu Om và tia cuối On sai khác nhau một bội nguyên của 2π nên có dạng là α=75π14+k2πk

Ta có  ‒π ≤ α < π, suy ra π+75π14k2π<π+75π14, suy ra 6128k<8928.

Vì k ∈ ℤ nên k = 3.

Vậy α=75π14+3.2π=9π14.

c) Số đo α của các góc lượng giác bất kì có cùng tia đầu Om và tia cuối On sai khác nhau một bội nguyên của 2π nên có dạng là α=39π8+k2πk.

Ta có  ‒π ≤ α < π, suy ra 47π8k2π<π31π8, suy ra 4716k<3116.

Vì k ∈ ℤ nên k = ‒2.

Vậy α=39π8+2.2π=7π8.

d) Số đo α của các góc lượng giác bất kì có cùng tia đầu Om và tia cuối On sai khác nhau một bội nguyên của 2π nên có dạng là α = 2023π + k2π (k ∈ ℤ).

Ta có  ‒π ≤ α < π, suy ra ‒2024π ≤ k2π < ‒2022π, suy ra ‒1012π ≤ k < ‒1011.

Vì k ∈ ℤ nên k = ‒1012.

Vậy α = 2023π + (‒1012).2π = ‒π.

Đánh giá

0

0 đánh giá