Toptailieu.vn biên soạn và giới thiệu cách giải các dạng toán 300 Bài tập Đường tiệm cận có đáp án (2023) môn Toán lớp 12 Giải tích gồm phương pháp giải chi tiết, bài tập minh họa có lời giải và bài tập tự luyện chi tiết giúp học sinh ôn tập và nắm chắc kiến thức các dạng toán. Mời các bạn đón xem:
300 Bài tập Đường tiệm cận có đáp án (2023)
Dạng 1: Xác định tiệm cận
A. Phương pháp giải & Ví dụ
1. Đường tiệm cận ngang
Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng (a; +∞),(-∞; -b) hoặc (-∞; +∞). Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn
Nhận xét: Như vậy để tìm tiệm cận ngang của đồ thị hàm số ta chỉ cần tính giới hạn của hàm số đó tại vô cực.
2. Đường tiệm cận đứng
Đường thẳng x = x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn
Ví dụ 1: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
Hướng dẫn:
a. Ta có:
là tiệm cận ngang của đồ thị hàm số.
là tiệm cận đứng của đồ thị hàm số.
b. Ta có:
là tiệm cận ngang của đồ thị hàm số.
⇒ Đồ thị hàm số không có tiệm cận đứng
c. Ta có:
⇒ Đồ thị hàm số không có tiệm cận ngang.
⇒ x = 1/2 là tiệm cận đứng của đồ thị hàm số.
p>Ví dụ 2: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
Hướng dẫn:
a. Ta có:
⇒ y = 1; y = -1 là tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số không có tiệm cận đứng.
b. Ta có:
⇒ y = 4; y = 2 là tiệm cận ngang của đồ thị hàm số.
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
Ví dụ 3: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
a. b.
Hướng dẫn:
a. Đồ thị hàm số không có tiệm cận đứng
⇒ y = 11/2 là tiệm cận ngang của đồ thị hàm số
b. Đồ thị hàm số không có tiệm cận đứng
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số.
B. Bài tập vận dụng
Câu 1: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Ta có
⇒ y = -3 là tiệm cận ngang của đồ thị hàm số.
⇒ x = -2 là tiệm cận đứng của đồ thị hàm số.
Câu 2: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Ta có
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.
Câu 3: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Ta có
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 1; x = 2 là tiệm cận đứng của đồ thị hàm số.
Câu 4: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm
Ta có
⇒ y = 1/2; y = -1/2 là tiệm cận ngang của đồ thị hàm số.
Câu 5: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Đồ thị hàm số không có tiệm cận đứng
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
Trắc nghiệm tìm tiệm cận của đồ thị hàm sốCâu 1: Đồ thị hàm số có các đường tiệm cận đứng và tiệm cận ngang là:
A. x = -1; y = -3
B. x = 1; y = -3
C. x = 1; y = 3
D. x = -3; y = 1
Đáp án : B
Giải thích :
Ta có ⇒ y = -3 là tiệm cận ngang.
⇒ x = 1 là tiệm cận đứng.
Câu 2: Số đường tiệm cận của đồ thị hàm số là:
A. 4
B. 2
C. 1
D. 3
Đáp án : D
Giải thích :
Ta có ⇒ y = 0 là tiệm cận ngang.
⇒ x = 2; x = -2 là tiệm cận đứng.
Câu 3: Đồ thị hàm số có các đường tiệm cận đứng và tiệm cận ngang là:
A. x = 1, x = 2, y = 0
B. x = 1, x = 2, y = 2
A. x = 1, y = 0
D. x = 1, x = 2, y = -3
Đáp án : A
Giải thích :
Ta có ⇒ y = 0 là tiệm cận ngang.
⇒ x = 1; x = 2 là tiệm cận đứng.
Câu 4: Đồ thị hàm số có các đường tiệm cận đứng và tiệm cận ngang là:
A. x = 3; y = -3
B. x = 3; y = 0
C. x = 3; y = 1
D. y = 3; x = -3
Đáp án : A
Giải thích :
Ta có ⇒ y = -3 là tiệm cận ngang.
⇒ x = 3 là tiệm cận đứng.
Câu 5: Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
A. 0
B. 1
C. 2
D. 3
Đáp án : A
Giải thích :
Ta có:
Đồ thị hàm số không có tiệm cận đứng và ngang.
Dạng 2: Tìm tham số m để hàm số có tiệm cận
A. Phương pháp giải & Ví dụVí dụ 1.(THPT Chuyên Bảo Lộc – Lâm Đồng 2017). Cho hàm số . Đồ thị hàm số nhận trục hoành và trục tung làm tiệm cận ngang và tiệm cận đứng. Tính giá trị biểu thức P = m + n.
Hướng dẫn
Đồ thị hàm số có tiệm cận ngang y = m + 1 và tiệm cận đứng x = n - 1. Do đó đồ thị hàm số nhận trục tung x = 0 và trục hoành y = 0 làm tiệm cận khi và chỉ khi
Ví dụ 2 (THPT chuyên Thái Nguyên 2017 L2). Tìm m để đồ thị hàm số có hai đường tiệm cận đứng.
Hướng dẫn
Ta có x2 - 3x + 2 = 0 ⇔ x = 1 hoặc x = 2
Để hai đường thẳng x = 1 và x = 2 là đường tiệm cận của đồ thị hàm số thì x = 1 và x = 2 không là nghiệm của tử số mx3 - 2. Tức là:
Ví dụ 3: Tìm tất cả các giá trị của tham số m để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng.
Hướng dẫn
Ta có nên y = 0 là tiệm cận ngang của đồ thị hàm số.
Do đó để đồ thị hàm số có tiệm cận ngang mà không có tiệm cận đứng thì
phương trình x2 - 4x + m = 0 vô nghiệm ⇔ Δ' < 0 ⇔ 4 - m < 0 ⇔ m > 4
B. Bài tập vận dụngCâu 1: Tìm giá trị của tham số m để đồ thị hàm số nhận đường thẳng y = 1 làm tiệm cận ngang.
Nghiệm của mẫu thức x = 2. Để đồ thị hàm số có tiệm cận thì x = 2 không là nghiệm của phương trình mx + 1 = 0 hay 2m + 1 ≠ 0 ⇔ m ≠ -1/2
Đường tiệm cận ngang của đồ thị hàm số là y = -m/2
Để đồ thị hàm số nhận y = 1 làm tiệm cận ngang thì -m/2 = 1 ⇔ m = -2 (thỏa mãn)
Vậy giá trị tham số m cần tìm là m = -2
Câu 2: Tìm giá trị của tham số m để đồ thị hàm số nhận đường thẳng x = 1 làm tiệm cận đứng.
Nghiệm của tử thức x = -1/3. Để đồ thị hàm số có tiệm cận thì x = -1/3 không là nghiệm của phương trình m - 2x = 0 hay m - 2.(-1/3) ≠ 0 ⇔ m ≠ -2/3
Đường tiệm cận đứng của đồ thị hàm số là x = m/2
Để đồ thị hàm số nhận x = 1 làm tiệm cận đứng thì m/2 = 1 ⇔ m = 2
Vậy giá trị tham số m cần tìm là m = 2
Câu 3: Cho hàm số . Đồ thị hàm số nhận đường thẳng x = 2; y = 2 lần lượt là tiệm cận đứng và tiệm cận ngang. Biểu thức 9m2 + 6mn + 36n2 có giá trị là bao nhiêu?
Để x = 2 làm tiệm đứng của đồ thị hàm số thì x = 2 là nghiệm của mẫu nhưng không là nghiệm của tử hay
Để y = 2 làm tiệm cận ngang của đồ thị hàm số thì m/n = 2 ⇔ m = 2n
Giải hệ
Biểu thức 9m2 + 6mn + 36n2 = 9.(1/3)2 + 6. 1/3.1/6 + 36.(1/6)2 = 7/3
Câu 4:Tìm giá trị của m và n để đồ thị hàm số nhận đường thẳng x = 2 làm tiệm cận đứng và đường thẳng y = 2 làm tiệm cận ngang.
Để x = 2 làm tiệm đứng của đồ thị hàm số thì x = 2 là nghiệm của mẫu nhưng không là nghiệm của tử hay
Để y = 2 làm tiệm cận ngang của đồ thị hàm số thì m = 2
Vậy m = 2; n = -2
Câu 5: (Sở GD Bắc Giang 2017 L2). Tìm tập hợp các giá trị m để đồ thị hàm số có đúng một đường tiệm cận.
Ta có nghiệm của tử thức x = 1/2
Vì ⇒ y = 0 là tiệm cận ngang.
Để đồ thị hàm số có đúng một đường tiệm cận thì phương trình 4x^2+4mx+1=0 vô nghiệm hoặc có nghiệm kép và nghiệm đó bằng 1/2
Nếu phương trình 4x2 + 4mx + 1 = 0 vô nghiệm ⇔ Δ' < 0 ⇔ 4m2 - 4 < 0 ⇔ -1 < m < 1
Nếu phương trình 4x2 + 4mx + 1 = 0 có nghiệm kép bằng -1/2
Vậy giá trị của tham số m cần tìm là -1 ≤ m < 1
Trắc nghiệm tìm tham số m để hàm số có tiệm cậnCâu 1: Biết đồ thị hàm số có tiệm cận đứng là x = 1 và tiệm cận ngang là y = 0. Tính a + 2b
A. 6
B. 7
C. 8
D. 10
Đáp án : C
Giải thích :
Vì đồ thị hàm số nhận x = 1 làm tiệm cận đứng nên x = 1 là nghiệm của mẫu nhưng không là nghiệm của tử hay
Vì đồ thị hàm số có tiệm cận ngang y = 0 nên a - 2b = 0 ⇔ a = 2b = 4
Vậy a + 2b = 4 + 2.2 = 8.
Câu 2: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số nhận đường thẳng y = 8 làm tiệm cận ngang
A. m = 2
B. m = -2
C. m = ±2
D. m = 0
Đáp án : C
Giải thích :
Do nên đồ thị hàm số luôn có tiệm cận ngang y = 2m2
Cho 2m2 = 8 ⇔ m = ±2.
Câu 3: Biết rằng đồ thị hàm số nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng S = m2 + n2 - 2
A. S = 2
B. S = 0
C. S = -1
D. S = 1
Đáp án : B
Giải thích :
Ta có hàm số là hàm phân thức nên nhận y = m - 2n - 3 là tiệm cận ngang và x = m + n là tiệm cận đứng của đồ thị hàm số.
Vì đồ thị hàm số nhận x = 0; y = 0 làm tiệm cận đứng và tiệm cận ngang nên ta có:
Khi đó S = m2 + n2 - 2 = 1 + 1 - 2 = 0.
Câu 4: (THPT Lý Thái Tổ - Hà Nội 2017 L4). Tìm m để đồ thị hàm số có tiệm cận ngang là đường thẳng y = 1
A. m = 2
B. m = 5/2
C. m = 0
D. m = 1
Đáp án : D
Giải thích :
Ta có hàm số là hàm phân thức nên nhận y = (m + 1)/2 là tiệm cận ngang.
Cho (m + 1)/2 = 1 ⇒ m = 1.
Câu 5: (THPT Triệu Sơn – Thanh Hóa 2017 L3). Biết đồ thị hàm số nhận trục hoành và trục tung làm hai tiệm cận thì giá trị của a + b là:
A. 2
B. 10
C. 15
D. -10
Đáp án : C
Giải thích :
Vì đồ thị hàm số nhận x = 0 làm tiệm cận đứng nên x = 0 là nghiệm của mẫu nhưng không là nghiệm của tử hay
Vì đồ thị hàm số nhận y = 0 làm tiệm cận ngang nên ta có 4a - b = 0 ⇒ a = b/4 = 3
Khi đó a + b = 15.
Dạng 3: Các bài toán liên quan đến tiệm cận của hàm số
A. Phương pháp giải & Ví dụ
Ví dụ 1: Tìm m để đồ thị hàm số có đường tiệm cận ngang cắt đường thẳng d:y = x tại điểm A(1; 1).
Hướng dẫn
Nghiệm của tử thức 2x - 1 = 0 ⇔ x = 1/2.
Để đồ thị hàm số có tiệm cận thì x = 1/2 không là nghiệm của mẫu hay m.1/2 - 1 ≠ 0 ⇔ m ≠ 2
Đường tiệm cận ngang y = 2/m
Phương trình hoành độ giao điểm của đường tiệm cận ngang y = 2/m và đường thẳng d:y = x là:
2/m = x
Mà hai đường này cắt nhau tại điểm A(1; 1) nên ta có 2/m = 1 ⇔ m = 2 (loại)
Vậy không tồn tại giá trị của m thỏa mãn yêu cầu bài toán.
Ví dụ 2: Tìm trên đồ thị hàm số những điểm M sao cho khoảng cách từ điểm M đến tiệm cận đứng bằng 3 lần khoảng cách từ M đến tiệm cận ngang của đồ thị
Hướng dẫn
Gọi M(a;(2a + 1)/(a - 1)) với a ≠ 1 là điểm thuộc đồ thị.
Đường tiệm cận đứng d1: x = 1; đường tiệm cận ngang d2:y = 2
Vì M cách đều hai tiệm cận của đồ thị hàm số nên
Với a = -2 thì tọa độ điểm M là M =(-2; 1)
Với a = 4 thì tọa độ điểm M là M =(4; 3)
Vậy các điểm cần tìm là M(-2; 1) và M(4; 3)
Ví dụ 3: Cho hàm số ) có đồ thị (C). Với giá trị nào của m thì đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số cùng hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8.
Hướng dẫn
Để x = 1 là tiệm cận đứng của đồ thị hàm số thì x = 1 là nghiệm của mẫu nhưng không là nghiệm của tử hay 2m.1 + m ≠ 0 ⇔ 3m ≠ 0 ⇔ m ≠ 0.
Đường tiệm cận đứng x = 1; đường tiệm cận ngang y = 2m
Vì đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số cùng hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8 nên
(thỏa mãn)
Giá trị của tham số m cần tìm là m = 4; m = -4.
B. Bài tập vận dụng
Câu 1: Tìm giá trị của tham số m để tiệm cận đứng của đồ thị hàm số đi qua điểm M(2; 3).
Nghiệm của mẫu thức x = -m
Để đồ thị hàm số có tiệm cận đứng thì x = -m thì x = -m không là nghiệm của phương trình 2x + 1 = 0. Khi đó 2.(-m) = 1 ≠ 0 ⇔ m ≠ -1/2
Vì tiệm cận đứng đi qua điểm M(2; 3) nên 2 = -m ⇔ m = -2
Câu 2: Cho hàm số có đồ thị (C). Biết tiệm cận ngang của (C) đi qua điểm A(-1; 2) đồng thời điểm I(2; 1) thuộc (C). Tìm giá trị của biểu thức P = m + n.
Để x = 1 là tiệm cận đứng của đồ thị hàm số thì x = 1 là nghiệm của mẫu nhưng không là nghiệm của tử hay m + n ≠ 0.
Đường tiệm cận ngang là y = m
Vì tiệm cận ngang của (C) đi qua điểm A(-1; 2) nên m = 2
Vì I∈(C) nên 1 = (2m + n)/(2 - 1) ⇒ 2m + n = 1 ⇔ n = 1 - 2m = -3
Khi đó P = m + n = 2 + (-3) = -1
Câu 3: Cho hàm số có đồ thị (C). Gọi M(x0; y0) là điểm thuộc (C) sao cho tổng khoảng cách từ M đến hai tiệm cận của (C) là nhỏ nhất. Tìm giá trị nhỏ nhất của d.
Gọi thuộc đồ thị (C) với x0 ≠ -2
Đồ thị (C) có tiệm cận đứng Δ1:x = 2; tiệm cận ngang Δ2:y = 2
Ta có d(M; Δ1 )= |x0 - 2| và d(M; Δ2 )= |y0 - 2| = 1/|x0 - 2|
Áp dung AM - GM ta được d(M; Δ1 ) + d(M; Δ2 ) =
Vậy giá trị nhỏ nhất của d là 2.
Câu 4: Cho hàm số có đồ thị (H). Tìm tích số các khoảng cách từ một điểm M tùy ý thuộc (H) đến hai đường tiệm cận của (H).
Gọi ∈(C) với a ≠ -1
Đường tiệm cận đứng d1:x = -1; đường tiệm cận ngang d2:y = 2
Khi đó d(M;d1 ).d(M;d2 )=
Câu 5:Cho hàm số có đồ thị (C). Với giá trị nào của m thì giao điểm của hai đường tiệm cận là điểm M(x; y) sao cho tổng x.y < 0.
Để x = -2 là tiệm cận đứng của đồ thị hàm số thì x = -2 là nghiệm của mẫu nhưng không là nghiệm của tử hay (1 - m2 )(-2) + 1 ≠ 0
Đường tiệm cận đứng x = -2; đường tiệm cận ngang y = 1 - m2 nên M(-2; 1 - m2)
Vì x.y < 0 ⇒ (-2)(1 - m2 )< 0 ⇔ 1 - m2 > 0 ⇔ -1 < m < 1
Kết hợp điều kiện: Giá trị của tham số m thỏa mãn là
Trắc nghiệm về tiệm cận của hàm số
Câu 1: Cho đường cong (C): . Tích số các khoảng cách từ một điểm bất kì trên (C) đến hai đường tiệm cận của (C) bằng:
A. 2
B. 3
C. 4
D. 5
Đáp án :
Giải thích :
Gọi ∈(C) với a ≠ 1
Đường tiệm cận đứng d1:x = 1; đường tiệm cận ngang d2:y = 3
Khi đó d(M; d1 ).d(M; d2 ) = .
Câu 2:Tìm giá trị thực của tham số m để đồ thị hàm số : có đường tiệm cận đứng đi qua điểm M(-1; √2).
A. m = 2
B. m = 0
C. m = 1/2
D. m = √2/2
Đáp án :
Giải thích :
Nghiệm của mẫu thức x = -m/2. Để đồ thị hàm số có tiệm cận đứng thì x = -m/2 không là nghiệm của tử hay -m/2.m-1 ≠ 0 ⇔ m2 + 2 ≠ 0 (luôn đúng).
Tiệm cận đứng của đồ thị hàm số là x = -m/2
Để tiệm cận đứng đi qua điểm M(-1; √2) thì -1 = -m/2 ⇔ m = 2.
Câu 3: Cho hàm số có đồ thị (C). Nếu đồ thị hàm số có tiệm cận đứng x = 3 và đi qua điểm A(2; 5) thì phương trình hàm số là:
A.
B.
C.
D.
Đáp án :
Giải thích :
Để đồ thị hàm số có tiệm cận đứng x = 3 thì x = 3 là nghiệm của mẫu nhưng không là nghiệm của tử hay
Để đồ thị hàm số đi qua điểm A(2; 5) thì 5 = (2m + 1)/(2 + n) ⇔ 10 + 5n = 2m + 1 ⇔ m = -3
Khi đó phương trình hàm số là .
Câu 4: Cho hàm số có đồ thị (C) và điểm A(1; 2). Gọi I là giao điểm của hai đường tiệm cận của đồ thị (C). Tìm m để khoảng cách giữa hai điểm I và A nhỏ nhất?
A. m = -1
B. m = -2
C. m = 1
D. m = 2
Đáp án :
Giải thích :
Điều kiện có các đường tiệm cận là m ≠ -1
Đường tiệm cận đứng x = m; đường tiệm cận ngang y = 1. Suy ra I(m; 1)
Ta có . Suy ra AI nhỏ nhất khi m = 1
Vậy m = 1.
Câu 5: Cho hàm số có đồ thị (C). Tìm tất cả các giá trị của tham số m để đường tiệm cận ngang của đồ thị hàm số (C) cắt đường thẳng (d):y = -x - 3 tại điểm có hoành độ bằng -1.
A.
B.
C.
D.
Đáp án :
Giải thích :
Điều kiện để có các đường tiệm cận là m2 - 3m + 1 ≠ 0
Đường tiệm cận ngang là: y = m2 - 3m
Phương trình hoành độ giao điểm của đường tiệm ngang y = m2 - 3m và đường thẳng (d):y = -x - 3 là: m2 - 3m = -x - 3
Vì giao điểm có hoành độ bằng -1 nên ta có
m2 - 3m = 1 - 3 (thỏa mãn)
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.