Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 ài tập cuối chương VI sách Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 1. Mời các bạn đón xem:
Toán 10 Chân trời sáng tạo: Bài tập cuối chương 6
a) Giả sử ta lấy giá trị 2,7 làm giá trị gần đúng của e. Hãy chứng tỏ sai số tuyệt đối không vượt quá 0,02 và sai số tương đối không vượt quá 0,75%
b) Hãy quy tròn e đến hàng phần nghìn.
c) Tìm số gần đúng của số e với độ chính xác 0,00002.
Phương pháp giải
a)
Sai số tuyệt đối là:
Sai số tương đối là:
c)
Bước 1: Tìm hàng của chữ số khác 0 đầu tiên bên trái của d = 0,00002
Bước 2: Quy tròn e đền hàng tìm được ở trên.
Lời giải
a)
Sai số tuyệt đối là:
Sai số tương đối là:
b) Quy tròn e đến hàng phần nghìn ta được: 2,718.
c)
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,00002 là hàng phần trăm nghìn.
Quy tròn e đền hàng phầm trăm nghìn ta được 2,71828.
Bài 2 trang 126 Toán 10 Tập 1: Cho các số gần đúng và Hãy xác định số quy tròn của a và b.
Phương pháp giải
Cho số gần đúng
Bước 1: Tìm hàng của chữ số khác 0 đầu tiên bên trái của d
Bước 2: Quy tròn a ở hàng gấp 10 lần hàng tìm được ở trên
Lời giải
a) Hàng của chữ số khác 0 đầu tiên bên trái của d = 1000 là hàng nghìn.
Quy tròn a đền hàng chục nghìn ta được 54920000.
b) Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,002 là hàng phần nghìn.
Quy tròn b đền hàng phần trăm ta được 5,79.
Tổ |
Tổng số sách |
1 |
16 |
2 |
20 |
3 |
20 |
4 |
19 |
5 |
18 |
Hãy cho biết lớp trưởng thống kê đã chính xác chưa. Tại sao?
Lời giải
Vì mỗi bạn đóng góp 2 quyển sách nên số sách của mỗi tổ luôn là số chẵn. Trong số sách thống kê, tổ 4 có 19 cuốn sách, là số lẻ (Vô lí). Do đó lớp trưởng thống kê chưa chính xác.
a) Hãy cho biết các phát biểu sau là đúng hay sai?
i. Sản lượng nuôi tôm mỗi năm của tỉnh Tiền Giang đều cao hơn tỉnh Cà Mau.
ii. Ở tỉnh Cà Mau, sản lượng nuôi tôm năm 2018 tăng gấp hơn 4 lần so với năm 2008.
iii. Ở tỉnh Tiền Giang, sản lượng nuôi tôm năm 2018 tăng gấp hơn 2,5 lần so với năm 2008.
iv. Ở tỉnh Tiền Giang, từ năm 2008 đến năm 2018, sản lượng nuôi tôm mỗi năm tăng trên 50% so với năm cũ.
v. Trong vòng 5 năm từ 2013 đến 2018, sản lượng nuôi tôm của tỉnh Cà Mau tăng cao hơn của tỉnh Tiền Giang.
b) Để so sánh sản lượng nuôi tôm của hai tỉnh Cà Mau và Tiền Giang, ta nên sử dụng loại biểu đồ nào?
Lời giải
a)
Phát biểu i sai vì ở Tiền Giang sản lượng các năm đều nhỏ hơn 30 000 tấn, còn ở Cà Mau sản lượng các năm đều lớn hơn 75 000 tấn.
Phát biểu ii sai do sản lượng nuôi tôm ở Cà Mau năm 2018 là 175 000 tấn gấp gần 2 lần năm 2008 là 95 000 tấn.
Phát biểu iii đúng do sản lượng nuôi tôm ở Tiền Giang năm 2018 là 28 500 tấn gấp hơn 2,5 lần năm 2008 là 10 000 tấn.
Phát biểu iv đúng do sản lượng nuôi tôm ở Tiền Giang năm 2008 là 10000 tấn, năm 2013 là 17 500 tấn và năm 2018 là 28 500 tấn, đều tăng trên 50% so với năm cũ.
Phát biểu v sai do từ năm 2013 đến 2018, tỉnh Cà Mau tăng 175 000 – 140 000 = 35 000 tấn, tương ứng 25% còn tỉnh Tiền Giang, tăng (28 500 – 17 500) : 17 500 = 63%
b)
Để so sánh sản lượng nuôi tôm của hai tỉnh Cà Mau và Tiền Giang, ta nên sử dụng loại biểu đồ cột kép.
Cân nặng (đơn vị: gam) |
Số quả |
8 |
1 |
19 |
10 |
20 |
19 |
21 |
17 |
22 |
3 |
a) Hãy tìm số trung bình, trung vị, mốt của mẫu số liệu trên
b) Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ của mẫu số liệu trên.
Phương pháp giải
Cho bảng số liệu:
Giá trị |
|
|
… |
|
Tần số |
|
|
… |
|
(Giá trị tương ứng với cân nặng, số quả tương ứng với tần số)
a)
+) Số trung bình:
+) Sắp xếp các giá trị theo thứ tự không giảm:
Trung vị ()
+) Mốt là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
b)
+) Tình độ lệch chuẩn:
Tính phương sai
=> Độ lệch chuẩn
+) Khoảng biến thiên = Giá trị lớn nhất – giá trị nhỏ nhất
+) Tứ phân vị:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) x là giá trị ngoại lệ nếu hoặc (trong đó )
Lời giải
a)
Số trung bình
+) Sắp xếp các giá trị theo thứ tự không giảm:
Trung vị
+) Mốt
b)
+) Tình độ lệch chuẩn:
Phương sai
=> Độ lệch chuẩn
+) Khoảng biến thiên
+) Tứ phân vị:
là trung vị của mẫu: . Do đó
là trung vị của mẫu: . Do đó
+) x là giá trị ngoại lệ nếu hoặc .
Vậy có một giá trị ngoại lệ là 8.
Đội A |
Đội B |
28 |
32 |
24 |
20 |
26 |
19 |
25 |
21 |
25 |
28 |
23 |
29 |
20 |
21 |
29 |
22 |
21 |
29 |
24 |
19 |
24 |
29 |
a) Hãy tìm số trung bình, mốt, độ lệch chuẩn và tứ phân vị của tuổi mỗi cầu thủ của từng đội bóng.
b) Tuổi của các cầu thủ ở đội bóng nào đồng đều hơn? Tại sao?
Phương pháp giải:
a)
+) Số trung bình:
+) Mốt: là giá trị xuất hiện nhiều nhất trong mẫu số liệu.
+) Độ lệch chuẩn
Tính phương sai
+) Tứ phân vị:
Sắp xếp mẫu số liệu theo thứ tự không giảm:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
b)
So sánh độ lệch chuẩn, đội nào có độ lệch chuẩn nhỏ hơn thì tuổi của các cầu thủ là đồng đều hơn.
Lời giải
a) Đội A:
+) Số trung bình:
+) Mốt:
+) Phương sai => Độ lệch chuẩn
+) Tứ phân vị:
Sắp xếp mẫu số liệu theo thứ tự không giảm: 20, 21, 23, 24, 24, 24, 25, 25, 26, 28, 29
là trung vị của nửa số liệu: 20, 21, 23, 24, 24. Do đó
là trung vị của nửa số liệu: 25, 25, 26, 28, 29. Do đó
Đội B:
+) Số trung bình:
+) Mốt:
+) Phương sai => Độ lệch chuẩn
+) Tứ phân vị:
Sắp xếp mẫu số liệu theo thứ tự không giảm: 19, 19, 20, 21, 21, 22, 28, 29, 29, 29, 32.
là trung vị của nửa số liệu: 19, 19, 20, 21, 21. Do đó
là trung vị của nửa số liệu: 28, 29, 29, 29, 32. Do đó
b)
Ta so sánh độ lệch chuẩn do dó đội A có độ tuổi đồng đều hơn.
Chú ý
Ta không so sánh số trung vị vì không có giá trị nào quá lớn hay quá nhỏ so với các giá trị còn lại.
Tháng |
Năm 2019 |
Năm 2020 |
1 |
54 |
45 |
2 |
22 |
28 |
3 |
24 |
31 |
4 |
30 |
34 |
5 |
35 |
32 |
6 |
40 |
35 |
7 |
31 |
37 |
8 |
29 |
33 |
9 |
29 |
33 |
10 |
37 |
35 |
11 |
40 |
34 |
12 |
31 |
37 |
a) Hãy tính số trung bình, khoảng tứ phân vị và độ lệch chuẩn của số lượng xe bán được trong năm 2019 và năm 2020.
b) Nêu nhận xét về tác động của chiến lược kinh doanh mới lên số lượng xe bán ra hằng tháng.
a)
+) Số trung bình:
+) Khoảng tứ phân vị:
Sắp xếp mẫu số liệu theo thứ tự không giảm:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Độ lệch chuẩn
Tính phương sai
b)
So sánh độ lệch chuẩn, đội nào có độ lệch chuẩn nhỏ hơn thì tuổi của các cầu thủ là đồng đều hơn.
Lời giải
a) Năm 2019:
+) Số trung bình:
+) Phương sai => Độ lệch chuẩn
+) Khoảng tứ phân vị:
Sắp xếp mẫu số liệu theo thứ tự không giảm: 22, 24, 29, 29, 30, 31, 31, 35, 37, 40, 40, 54
là trung vị của nửa số liệu: 22, 24, 29, 29, 30, 31. Do đó
là trung vị của nửa số liệu: 31, 35, 37, 40, 40, 54. Do đó
Năm 2020:
+) Số trung bình:
+) Phương sai => Độ lệch chuẩn
+) Khoảng tứ phân vị:
Sắp xếp mẫu số liệu theo thứ tự không giảm: 28, 31, 32, 33, 33, 34, 34, 35, 35, 37, 37, 45.
là trung vị của nửa số liệu: 28, 31, 32, 33, 33, 34. Do đó
là trung vị của nửa số liệu: 34, 35, 35, 37, 37, 45. Do đó
b) Nhận xét:
So sánh số trung bình: số lượng bán ra trung bình theo tháng không tăng nhiều so với năm trước (tăng 1)
So sánh độ lệch chuẩn: Số lượng xe bán ra năm 2020 không có sự chênh lệch quá nhiều giữa các tháng.
=> Tác động của chiến lược: Số lượng xe bán ra tăng ít, nhưng đồng đều giữa các tháng.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.