Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 Bài 3. Các số đặc trưng đo xu thế trung tâm của mẫu số liệu sách Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 1. Mời các bạn đón xem:
Toán 10 Chân trời sáng tạo Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
1. SỐ TRUNG BÌNH VÀ TRUNG VỊ
Lời giải
Trung bình, mỗi bạn ở Tổ 1 được:
Trung bình, mỗi bạn ở Tổ 2 được:
Vậy tổ 2 có kết quả kiểm tra tốt hơn.
Nhóm A |
12,2 |
13,5 |
12,7 |
13,1 |
12,5 |
12,9 |
13,2 |
12,8 |
Nhóm B |
12,1 |
13,4 |
13,2 |
12,9 |
13,7 |
|
|
|
Nhóm nào có thành tích chạy tốt hơn?
Phương pháp giải:
So sánh thời gian chạy trung bình của 2 nhóm.
Lời giải
Số giây trung bình để chạy 100 mét của các bạn học sinh ở nhóm A là:
Số giây trung bình để chạy 100 mét của các bạn học sinh ở nhóm B là:
Vậy nhóm A có thành tích chạy tốt hơn.
Số bàn thắng |
0 |
1 |
2 |
3 |
4 |
6 |
Số trận |
5 |
10 |
5 |
3 |
2 |
1 |
Hãy xác định số bàn thắng trung bình đội đó ghi được trong một trận đấu của mùa giải.
Phương pháp giải:
Số bàn thắng trung bình trong mỗi trận = tổng của số bàn thắng của mùa giải: tổng số trận
Lời giải
Số bàn thắng ghi được trong mùa giải đó là:
(bàn thắng)
Số bàn thắng trung bình đội đó ghi được trong một trận đấu là:
Vậy trung bình một trận đội đó ghi được 1,65 bàn thắng.
2. TRUNG VỊ VÀ TỨ PHÂN VỊ
Tổ 1 |
3 |
1 |
2 |
1 |
2 |
2 |
3 |
25 |
1 |
Tổ 2 |
4 |
5 |
4 |
3 |
3 |
4 |
5 |
4 |
|
a) Trung bình mỗi bạn Tổ 1 và mỗi bạn Tổ 2 đọc bao nhiêu quyển sách ở thư viện trường trong tháng đó?
b) Em hãy thảo luận với các bạn trong nhóm xem tổ nào chăm đọc sách ở thư viện hơn.
Lời giải
a) Trung bình mỗi bạn Tổ 1 đọc:
(quyển sách)
Trung bình mỗi bạn Tổ 2 đọc:
(quyển sách)
b) Sắp xếp số sách mối bạn Tổ 1 đã đọc theo thứ tự không giảm, ta được dãy:
1; 1; 1; 2; 2; 2; 3; 3; 25
Vì cỡ mẫu bằng 9 nên trung vị của Tổ 1 là số liệu thứ 5 của dãy trên, tức là
Sắp xếp số sách mối bạn Tổ 2 đã đọc theo thứ tự không giảm, ta được dãy:
3; 3; 4; 4; 4; 4; 5; 5.
Vì cỡ mẫu bằng 8 nên trung vị của Tổ 2 là trung bình cộng của số liệu thứ 4 và thứ 5 của dãy trên, tức là
Vậy nếu so sánh theo trung vị thì các bạn Tổ 2 đọc nhiều sách ở thư viện hơn các bạn Tổ 1.
Thực hành 1 trang 115 Toán 10 Tập 1: Hãy tìm trung vị của các số liệu ở Vận dụng 1 và Vận dụng 2.
Phương pháp giải:
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tìm cỡ mẫu n.
+ Nếu thì trung vị là số liệu thứ k
+ Nếu thì trung vị số liệu thứ k + số liệu thứ (k+1))
Lời giải
Vận dụng 1:
Nhóm A |
12,2 |
13,5 |
12,7 |
13,1 |
12,5 |
12,9 |
13,2 |
12,8 |
Nhóm B |
12,1 |
13,4 |
13,2 |
12,9 |
13,7 |
|
|
|
Sắp xếp thời gian chạy của nhóm A theo thứ tự không giảm ta được dãy:
Vì cỡ mẫu bằng 8 nên trung vị của nhóm A là trung bình cộng của số liệu thứ 4 và thứ 5 của dãy trên, tức là
Sắp xếp thời gian chạy của nhóm B theo thứ tự không giảm ta được dãy:
Vì cỡ mẫu bằng 5 nên trung vị của nhóm B là số liệu thứ 3 của dãy trên, tức là
Vận dụng 2:
Số bàn thắng |
0 |
1 |
2 |
3 |
4 |
6 |
Số trận |
5 |
10 |
5 |
3 |
2 |
1 |
Sắp xếp số bàn thắng của đội theo thứ tự không giảm ta được dãy:
Vì cỡ mẫu bằng nên trung vị của đội là trung bình cộng của số liệu thứ 13 và thứ 14 của dãy trên, tức là
50 |
56 |
57 |
62 |
58 |
52 |
66 |
61 |
54 |
61 |
64 |
69 |
52 |
65 |
58 |
68 |
67 |
56 |
59 |
54 |
Để thuận tiện cho việc luyện tập, ban huấn luyện muốn xếp 20 vận động viên trên thành 4 nhóm, mỗi nhóm gồm 25% số vận động viên có cân nặng gần nhau. Bạn hãy giúp ban huấn luyện xác định các ngưỡng cân nặng để phân nhóm mỗi vận động viên.
Phương pháp giải:
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu n, tìm tứ phân vị thứ hai (chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
Lời giải
Sắp xếp các cân nặng theo thứ tự không giảm, ta được dãy:
50; 52; 52; 54; 54; 56; 56; 57; 58; 58; 59; 61; 61; 62; 64; 65; 66; 67; 68; 69.
+) Vì cỡ mẫu , là số chẵn, nên giá trị tứ phân vị thứ hai là
+) Tứ phân vị thứ nhất là trung vị của mẫu: 50; 52; 52; 54; 54; 56; 56; 57; 58; 58.
Do đó
+) Tứ phân vị thứ nhất là trung vị của mẫu: 59; 61; 61; 62; 64; 65; 66; 67; 68; 69.
Do đó
Vậy 3 ngưỡng cân nặng để phân nhóm là: 55kg; 58,5 kg; 64,5 kg.
Thực hành 2 trang 117 Toán 10 Tập 1: Hãy tìm tứ phân vị của các mẫu số liệu sau:
a) 10; 13; 15; 2; 10; 19; 2; 5; 7
b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15
Phương pháp giải:
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu n, tìm tứ phân vị thứ hai (chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
Lời giải
a) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
2; 2; 5; 7; 10; 10; 13; 15; 19
+) Vì cỡ mẫu là , là số lẻ, nên giá trị tứ phân vị thứ hai là
+) Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7.
Do đó
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 13; 15; 19.
Do đó
b) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:
1; 2; 5; 5; 9; 10; 10; 15; 15; 19
+) Vì cỡ mẫu là , là số chẵn, nên giá trị tứ phân vị thứ hai là
+) Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9.
Do đó
+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 10; 15; 15; 19.
Do đó
3. MỐT
Loại hoa |
Hồng bạch |
Hồng nhung |
Hồng vàng |
Hồng kem |
Số bông bán được |
120 |
230 |
180 |
150 |
Cửa hàng nên nhập loại hoa hồng nào nhiều nhất để bán trong ngày 14 tháng 2 năm tiếp theo? Tại sao?
Lời giải
Dễ thấy: Hoa hồng nhung là loại hoa bán được nhiều nhất trong dịp năm nay, do đó cửa hàng nên nhập loại hoa này nhiều nhất để bán vào dịp 14 tháng 2 năm sau.
Lời giải
Điểm số bài kiểm tra môn Toán của các bạn trong Tổ 1 là 6; 10; 6; 8; 7; 10
Số điểm 6 là 2, bằng số điểm 10 và nhiều hơn số điểm 7, điểm 8. Do đó mẫu số liệu trên có
Bài tập
Bài 1 trang 118 Toán 10 Tập 1: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:
Lời giải a
a) .
Phương pháp giải:
Cho mẫu số liệu:
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Mốt là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
Lời giải
) .
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2: , là số chẵn nên
là trung vị của nửa số liệu . Do đó
là trung vị của nửa số liệu . Do đó
+) Chỉ có giá trị 41 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.
Do đó mốt
Lời giải b
b) .
Phương pháp giải:
Cho mẫu số liệu:
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Mốt là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
Lời giải
) .
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2: , là số lẻ nên
là trung vị của nửa số liệu . Do đó
là trung vị của nửa số liệu . Do đó
+) Giá trị 12 và giá trị 78 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.
Do đó mốt
Bài 2 trang 118 Toán 10 Tập 1: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:
a)
Giá trị |
23 |
25 |
28 |
31 |
33 |
37 |
Tần số |
6 |
8 |
10 |
6 |
4 |
3 |
b)
Giá trị |
0 |
2 |
4 |
5 |
Tần số tương đối |
0,6 |
0,2 |
0,1 |
0,1 |
Phương pháp giải
Cho bảng số liệu:
Giá trị |
|
|
… |
|
Tần số |
|
|
… |
|
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: là trung vị của mẫu số liệu trên.
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Mốt là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
Lời giải
a)
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: , là số lẻ
là trung vị của nửa số liệu đã sắp xếp bên trái :
Do đó
là trung vị của nửa số liệu đã sắp xếp bên phải
Do đó
+) Mốt
b) Giả sử cỡ mẫu
Khi đó ta có bảng số liệu như sau:
Giá trị |
0 |
2 |
4 |
5 |
Tần số |
6 |
2 |
1 |
1 |
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm
Bước 2: , là số chẵn
là trung vị của nửa số liệu: . Do đó
là trung vị của nửa số liệu: . Do đó
+) Mốt
Số bóng đỏ |
0 |
1 |
2 |
3 |
Số lần |
10 |
30 |
40 |
20 |
Hãy tìm số trung bình, tứ phân vị và mốt của bảng kết quả trên.
Phương pháp giải
Cho bảng số liệu:
Giá trị |
|
|
… |
|
Tần số |
|
|
… |
|
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: là trung vị của mẫu số liệu trên.
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Mốt là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
Lời giải
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: Vì , là số chẵn nên
là trung vị của nửa số liệu: Do đó
là trung vị của nửa số liệu Do đó
+) Mốt
Thời gian (đơn vị: phút) |
5 |
6 |
7 |
8 |
35 |
Số thí sinh |
1 |
3 |
5 |
2 |
1 |
a) Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.
b) Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.
Lời giải a
Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.
Phương pháp giải:
Cho bảng số liệu:
Giá trị |
|
|
… |
|
Tần số |
|
|
… |
|
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: là trung vị của mẫu số liệu trên.
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Mốt là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
Lời giải
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: Vì , là số chẵn nên
là trung vị của nửa số liệu: Do đó
là trung vị của nửa số liệu Do đó
+) Mốt
Lời giải b
Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.
Phương pháp giải:
So sánh:
+) so sánh số trung bình.
+) so sánh trung vị.
Lời giải
+) Nếu so sánh số trung bình: 9,08 > 7 do đó thời gian thi nói chung của các thí sinh trong năm nay là lớn hơn so với năm trước.
+) Nếu so sánh trung vị: Trung vị của hai năm đều bằng 7 do đó thời gian thi nói chung của các thí sinh trong hai năm là như nhau.
Do có 1 thí sinh có thời gian thi lớn hơn hẳn so với các thí sinh khác => nên so sánh theo trung vị.
Bác Dũng |
2 |
7 |
3 |
6 |
1 |
4 |
1 |
4 |
5 |
1 |
Bác Thu |
1 |
3 |
1 |
2 |
3 |
4 |
1 |
2 |
20 |
2 |
a) Hãy tìm số trung bình, tứ phân vị và mốt của số điện thoại mà mỗi bác gọi theo số liệu trên
b) Nếu so sánh theo số trung bình thì ai có nhiều cuộc điện thoại hơn?
c) Nếu so sánh theo số trung vị thì ai có nhiều cuộc điện thoại hơn?
d) Theo bạn, nên dùng số trung bình hay số trung vị để so sánh xem ai có nhiều cuộc gọi điện thoại hơn mỗi ngày?
Phương pháp giải
a) Cho bảng số liệu:
Giá trị |
|
|
… |
|
Tần số |
|
|
… |
|
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: là trung vị của mẫu số liệu trên.
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Mốt là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
d) So sánh:
+) Nếu các số liệu không có một giá trị nào quá lớn hoặc quá nhỏ => so sánh số trung bình.
+) Nếu các số liệu có một giá trị quá lớn hoặc quá nhỏ => so sánh trung vị.
Lời giải
a) Bác Dũng:
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: Vì , là số chẵn nên
là trung vị của nửa số liệu: Do đó
là trung vị của nửa số liệu Do đó
+) Mốt
Bác Thu
+) Số trung bình:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm,
Bước 2: Vì , là số chẵn nên
là trung vị của nửa số liệu: Do đó
là trung vị của nửa số liệu Do đó
+) Mốt
b) Do 3,9 > 3,4 nên theo số trung bình thì bác Thu có nhiều cuộc điện thoại hơn.
c) Do 3,5 > 2 nên theo số trung vị thì bác Dũng có nhiều cuộc điện thoại hơn.
d) Vì trong mẫu số liệu có một ngày bác Thu có tới 20 cuộc điện thoại, lớn hơn nhiều so với các ngày khác, do đó ta nên so sánh theo số trung vị.
Năm |
Tổng điểm |
Năm |
Tổng điểm |
Năm |
Tổng điểm |
Năm |
Tổng điểm |
2020 |
150 |
2015 |
151 |
2010 |
133 |
2005 |
143 |
2019 |
177 |
2014 |
157 |
2009 |
161 |
2004 |
196 |
2018 |
148 |
2013 |
180 |
2008 |
159 |
2003 |
172 |
2017 |
155 |
2012 |
148 |
2007 |
168 |
2002 |
166 |
2016 |
151 |
2011 |
113 |
2006 |
131 |
2001 |
139 |
(Nguồn: https://imo-offial.org)
Có ý kiến cho rằng điểm thi của đội tuyển giai đoạn 2001 – 2010 cao hơn giai đoạn 2011 – 2020. Hãy sử dụng số trung bình và trung vị để kiểm nghiệm xem ý kiến trên có đúng không.
Phương pháp giải
+) Số trung bình:
+) Trung vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2: Tình trung vị:
Lời giải
+) Giai đoạn 2001 – 2010
Số trung bình
Sắp sếp số liệu theo thứ tự không giảm, ta được:
Do , là số chẵn nên trung vị là:
+) Giai đoạn 2011 – 2020
Số trung bình
Sắp sếp số liệu theo thứ tự không giảm, ta được:
Do , là số chẵn nên trung vị là:
+) So sánh theo số trung bình hay số trung vị ta đều thấy điểm thi của đổi tuyển giai đoạn 2001 – 2010 cao hơn giai đoạn 2011 – 2020.
Vậy ý kiến trên là đúng.
a) Hãy lập thống kê số lượng học sinh theo điểm số ở mỗi lớp.
b) Hãy so sánh điểm số của học sinh các lớp đó theo số trung bình, trung vị và mốt.
Phương pháp giải
b)
+) Số trung bình:
+) Trung vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2: Tình trung vị:
+) Mốt là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt)
Lời giải
a)
Lớp 10A |
Điểm |
5 |
6 |
7 |
8 |
9 |
10 |
Số HS |
1 |
4 |
5 |
8 |
14 |
8 |
|
Lớp 10B |
Điểm |
5 |
6 |
7 |
8 |
9 |
10 |
Số HS |
4 |
6 |
10 |
10 |
6 |
4 |
|
Lớp 10C |
Điểm |
5 |
6 |
7 |
8 |
9 |
10 |
Số HS |
1 |
3 |
17 |
11 |
6 |
2 |
b)
+) Lớp 10A
Số trung bình
Sắp sếp số liệu theo thứ tự không giảm, ta được:
Do , là số chẵn nên trung vị là:
Mốt
+) Lớp 10B
Số trung bình
Sắp sếp số liệu theo thứ tự không giảm, ta được:
Do , là số chẵn nên trung vị là:
Mốt
+) Lớp 10C
Số trung bình
Sắp sếp số liệu theo thứ tự không giảm, ta được:
Do , là số chẵn nên trung vị là:
Mốt
+) So sánh:
Số trung bình: => Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10C, 10B.
Số trung vị: => Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10B, 10C.
Mốt: Lớp 10A có 14 điểm 9, Lớp 10B có 10 điểm 7 và 10 điểm 8, Lớp 10C có 17 điểm 7. Do đó so sánh theo mốt thì điểm số các lớp giảm dàn theo thứ tự là: 10A, 10B, 10C.
Lý thuyết Bài 3. Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
1. SỐ TRUNG BÌNH VÀ TRUNG VỊ
Cho mẫu số liệu
+) Số trung bình (hay TB cộng) của mẫu số liệu kí hiệu là , được tính bằng công thức:
+) Mẫu số liệu cho dưới dạng bảng tần số thì:
Với là tần số của giá trị và
+) Ý nghĩa: Số trung bình dùng để đại diện cho các số liệu của mẫu. Nó là một số đo xu thế trung tâm của mẫu đó.
2. TRUNG VỊ VÀ TỨ PHÂN VỊ
a. Trung vị
+) Trong trường hợp mẫu số liệu có giá trị bất thường (rất lớn hoặc rất bé so với đa số các giá trị khác), ta dùng trung vị để đo xu thế trung tâm.
Ví dụ: mẫu số liệu: 1 3 2 3 4 20
+) Tìm trung vị :
Bước 1: Sắp xếp các giá trị theo thứ tự không giảm
Bước 2: Cỡ mẫu = n.
+ Nếu n lẻ () thì
+ Nếu n chẵn () thì
+) Ý nghĩa: Trung vị là giá trị ở vị trí chính giữa của mẫu số liệu đã sắp xếp theo thứ tự không giảm. Trung vị không bị ảnh hưởng bởi giá trị bất thường như số trung bình.
b. Tứ phân vị
Tứ phân vị gồm 3 giá trị , nó chia mẫu số liệu đã sắp xếp
theo thứ tự từ nhỏ đến lớn thành 4 phần, mỗi phần đều chứa 25% giá trị.
+) Các bước tìm tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm.
Bước 2: Tìm trung vị, chính là
Bước 3: là trung vị của nửa số liệu bên trái (không bao gồm nếu n lẻ).
Bước 4: là trung vị của nửa số liệu bên phải (không bao gồm nếu n lẻ).
+) Chú ý:
còn được gọi là tứ phân vị thứ nhất hoặc tứ phân vị dưới, đại diện cho nửa mẫu số liệu phía dưới.
còn được gọi là tứ phân vị thứ ba hoặc tứ phân vị trên, đại diện cho nửa mẫu số liệu phía trên.
3. MỐT
+) Mốt của mẫu số liệu là giá trị xuất hiện nhiều nhất trong mẫu.
+) Ý nghĩa: Dùng mốt để đo xu thế trung tâm của mẫu số liệu khi mẫu có nhiều giá trị trùng nhau.
+) Nhận xét
- Mốt có thể không là duy nhất. Một mẫu có thể có nhiều mốt
- Khi các giá trị trong mẫu xuất hiện với tần số như nhau thì mẫu số liệu đó không có mốt.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.