Xét dấu của các tam thức bậc hai sau đây: f(x)= 2x^2+4x+2

702

Với giải Bài 4 trang 10 Toán 10 Tập 2 Chân trời sáng tạo chi tiết trong Bài 1. Số gần đúng và sai số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Xét dấu của các tam thức bậc hai sau đây: f(x)= 2x^2+4x+2

Bài 4 trang 10 Toán 10 Tập 2: Xét dấu của các tam thức bậc hai sau đây:

a) f(x)=2x2+4x+2

b) f(x)=3x2+2x+21                  

c) f(x)=2x2+x2

d) f(x)=4x(x+3)9

e) f(x)=(2x+5)(x3)

Phương pháp giải 

Bước 1: Tính và xác định dấu của biệt thức Δ=b24ac

Bước 2: Xác định nghiệm của f(x) (nếu có) x=b±b24ac2a

Bước 3: Xác định dấu của hệ số a

Bước 4: Xác định dấu của f(x)

Lời giải 

a) f(x)=2x2+4x+2 có Δ=0, có nghiệm kép là x1=x2=1

và a=2>0

Ta có bảng xét dấu như sau:

 Bài 4 trang 10 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Vậy f(x) dương với mọi x1

b) f(x)=3x2+2x+21 có Δ=256>0, hai nghiệm phân biệt là x1=73;x2=3

và a=3<0

Ta có bảng xét dấu như sau:

 Bài 4 trang 10 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 2)

Vậy f(x) dương với x(73;3) và âm khi x(;73)(3;+)

c) f(x)=2x2+x2 có Δ=15<0, tam thức vô nghiệm

và a=2<0

Ta có bảng xét dấu như sau:

 Bài 4 trang 10 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 3)

Vậy f(x) âm với mọi xR

d) f(x)=4x(x+3)9=4x212x9 có Δ=0, tam thức có nghiệm kép x1=x2=32 và a=4<0

Ta có bảng xét dấu như sau

 Bài 4 trang 10 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 4)

Vậy f(x) âm với mọi x32

e) f(x)=(2x+5)(x3)=2x2x15 có Δ=121>0, có hai nghiệm phân biệt x1=52;x2=3 và có a=2>0

Ta có bảng xét dấu như sau

 Bài 4 trang 10 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 5)

Vậy f(x) âm với x(52;3) và dương khi x(;52)(3;+)

Xem thêm các bài giải Toán 10 Chân trời sáng tạo hay, chi tiết khác:

HĐ Khám phá 1 trang 6 Toán 10 Tập 2: Đồ thị của hàm số y=f(x)=x2+x+3được biểu diễn trong hình 1...

Thực hành 1 trang 7 Toán 10 Tập 2: Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x=1...

Thực hành 2 trang 7 Toán 10 Tập 2Tìm biệt thức và nghiệm của các tam thức bậc hai sau...

HĐ Khám phá 2 trang 8 Toán 10 Tập 2: Quan sát đồ thị của các hàm số bậc hai trong các hình thức dưới đây. Trong mỗi trường hợp, hãy cho biết...

Thực hành 3 trang 9 Toán 10 Tập 2: Xét dấu của các tam thức bậc hai sau...

Vận dụng trang 9 Toán 10 Tập 2: Xét dấu tam thức bậc hai h(x)=0,006x2+1,2x30 trong bài toán khởi động và cho biết ở khoảng cách nào tính từ đầu cầu O thì vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu...

Bài 1 trang 9 Toán 10 Tập 2: Đa thức nào sau đây là tam thức bậc hai?...

Bài 2 trang 9 Toán 10 Tập 2: Xác định giá trị của  để các đa thức sau là tam thức bậc hai...

Bài 3 trang 10 Toán 10 Tập 2: Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức bậc hai tương ứng...

Bài 5 trang 10 Toán 10 Tập 2: Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được mét theo phương ngang được mô phỏng bằng hàm số h(x)=0,1x2+x1. Trong các khoảng nào của thì bóng nằm: cao hơn vành rổ, thấp hơn vành rổ và ngang vành rổ? Làm tròn các kết quả đến hàng phần mười...

Đánh giá

0

0 đánh giá