Cho phân thức P= (4x^2+2x+3)/(2x+1) (x khác 1/2) a) Tìm thương và dư của phép chia đa thức

143

Với giải Bài tập 6.40 trang 15 SBT Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 6 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho phân thức P= (4x^2+2x+3)/(2x+1) (x khác 1/2) a) Tìm thương và dư của phép chia đa thức

Bài tập 6.40 trang 15 SBT Toán 8 Tập 2: Cho phân thức P=4x2+2x+32x+1x12

a) Tìm thương và dư của phép chia đa thức 4x2 + 2x + 3 cho đa thức 2x + 1.

b) Sử dụng kết quả của câu a, hãy viết P dưới dạng tổng của một đa thức và một phân thức với tử thức và một hằng số. Dùng kết quả đó để tìm tất cả các giá trị nguyên của x để phân thức đã cho có giá trị cũng là số nguyên.

Lời giải:

a) Ta có:

Cho phân thức P= (4x^2+2x+3)/(2x+1) x khác 1/2

Do đó, (4x2 + 2x + 3) : (2x + 1) = 2x (dư 3) hay 4x2 + 2x + 3 = 2x(2x + 1) + 3.

b)Vì 4x2 + 2x + 3 = 2x(2x + 1) + 3 nên

P=4x2+2x+32x+1=2x2x+1+32x+1=2x+32x+1

Vì x là số nguyên nên 2x là số nguyên.

Để P là số nguyên thì (2x + 1) ∈ Ư(3) = {1; –1; 3; –3}.

Mà x là số nguyên.

Suy ra x ∈ {0; –1; 1; –2}. Các giá trị này đều thỏa mãn điều kiện x12.

Vậy x ∈ {0; –1; 1; –2}.

Đánh giá

0

0 đánh giá