Cho tam giác ABC có các đường trung tuyến BD và CE. Lấy các điểm H, K sao cho E là trung điểm của CH

182

Với giải Bài 17 trang 94 SBT Toán 8 Tập 1 Cánh diều chi tiết trong Bài 4: Hình bình hành giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho tam giác ABC có các đường trung tuyến BD và CE. Lấy các điểm H, K sao cho E là trung điểm của CH

Bài 17 trang 94 SBT Toán 8 Tập 1: Cho tam giác ABC có các đường trung tuyến BD và CE. Lấy các điểm H,K sao cho E là trung điểm của CH,D là trung điểm của BK. Chứng minh:

a)  Các tứ giác AHBC,AKCB là hình bình hành;

b) A là trung điểm của HK.

Lời giải:

Sách bài tập Toán 8 Bài 4 (Cánh diều): Hình bình hành (ảnh 2)

a) Tứ giác AHBC có E là trung điểm của hai đường chéo AB và CH nên AHBC là hình bình hành.

Tương tự, ta chứng minh được tứ giác AKCB là hình bình hành.

b) Do AHBC là hình bình hành nên AH//BCAH=BC. Tương tự, AKCB là hình bình hành nên AK//BC,AK=BC. Suy ra ba điểm H,A,K thẳng hàng và AH=AK. Vậy A là trung điểm của HK.

Đánh giá

0

0 đánh giá