Quan sát Hình 6, chứng minh rằng: a) ∆MNP ᔕ ∆DPC. b) NP ⊥ PC

122

Với giải Bài 2 trang 68 SBT Toán 8 Chân trời sáng tạo chi tiết trong Bài 3: Các trường hợp đồng dạng của hai tam giác vuông giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Quan sát Hình 6, chứng minh rằng: a) ∆MNP ᔕ ∆DPC. b) NP ⊥ PC

Bài 2 trang 68 SBT Toán 8 Tập 2Quan sát Hình 6, chứng minh rằng:

a) ∆MNP ᔕ ∆DPC.

b) NP ⊥ PC.

 

Quan sát Hình 6, chứng minh rằng: a) Tam giác MNP đồng dạng tam giác DPC

Lời giải:

a) Ta có MNDP=128=32 và PNCP=1510=32.

Xét ∆MNP vuông tại M và ∆DPC vuông tại D có MNDP=PNCP.

Do đó ∆MNP ᔕ ∆DPC.

b) Ta có ∆MNP ᔕ ∆DPC, suy ra MNP^=DPC^.

Mà MNP^+MPN^=90° (∆MNP vuông tại M).

Do đó DPC^+MPN^=90°, suy ra NP ⊥ PC.

Đánh giá

0

0 đánh giá