Chứng minh rằng, với mọi n∈ ℕ*, ta có C 0 n − C 1 n + C 2 n − C 3 n + … + ( − 1 ) n C n n = 0 .

1 K

Với giải Thực hành 5 trang 38 Chuyên đề Toán 10 Chân trời sáng tạo chi tiết trong Bài 4: Nhị thức Newton giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 4: Nhị thức Newton

Thực hành 5 trang 38 Chuyên đề Toán 10: Chứng minh rằng, với mọi n∈ ℕ*, ta có

Cn0-Cn1+Cn2-Cn3++(-1)nCnn=0.

Lời giải:

Xét khai triển:

(1 + x)n =Cn01n+Cn11n-1x+Cn21n-2x2+Cn31n-3x3++Cnnxn

=Cn0+Cn1x+Cn2x2+Cn3x3++Cnnxn.

Thay x = –1 ta được:

(1 – 1)n =Cn0+Cn1(-1)+Cn2(-1)2+Cn3(-1)3++Cnn(-1)n

=Cn0-Cn1+Cn2-Cn3++(-1)nCnn

Cn0-Cn1+Cn2-Cn3++(-1)nCnn=0.

Xem thêm các bài giải Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Khám phá 1 trang 34 Chuyên đề Toán 10: Có ba hộp, mỗi hộp đựng hai quả cầu được dán nhãn a và b (xem Hình 1)

Thực hành 1 trang 35 Chuyên đề Toán 10: Hãy khai triển:

Khám phá 2 trang 35 Chuyên đề Toán 10: Từ các công thức khai triển:

Thực hành 2 trang 37 Chuyên đề Toán 10: Sử dụng tam giác Pascal, hãy khai triển:

Thực hành 3 trang 38 Chuyên đề Toán 10: Xác định hệ số của x2 trong khai triển (3x + 2)9

Thực hành 4 trang 38 Chuyên đề Toán 10: Biết rằng trong khai triển (x + a)6 với a là một số thực, hệ số của x4 là 60. Tìm giá trị của a.

Vận dụng trang 38 Chuyên đề Toán 10: Trong hộp A có 10 quả cầu được đánh số từ 1 đến 10. Người ta lấy một số quả cầu từ hộp A rồi cho vào hộp B. Có tất cả bao nhiêu cách lấy, tính cả trường hợp lấy không quả (tức không lấy quả nào)?

Bài 1 trang 39 Chuyên đề Toán 10: Khai triển biểu thức:

Bài 2 trang 39 Chuyên đề Toán 10: Tìm hệ số của x10 trong khai triển của biểu thức (2 – x)12

Bài 3 trang 39 Chuyên đề Toán 10: Biết rằng a là một số thực khác 0 và trong khai triển của (ax + 1)6, hệ số của x4 gấp bốn lần hệ số của x2. Tìm giá trị của a

Bài 4 trang 39 Chuyên đề Toán 10: Biết rằng hệ số của x2 trong khai triển của (1 + 3x)n là 90. Tìm giá trị của n.

Bài 5 trang 39 Chuyên đề Toán 10: Chứng minh công thức nhị thức Newton (công thức (1), trang 35 ) bằng phương pháp quy nạp toán học.

Bài 6 trang 39 Chuyên đề Toán 10: Biết rằng (3x – 1)7 = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7.

Bài 7 trang 39 Chuyên đề Toán 10: Một tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con?

Bài 8 trang 39 Chuyên đề Toán 10: Từ 15 bút chì màu có màu khác nhau đôi một,

Đánh giá

0

0 đánh giá