Với giải Bài 5 trang 39 Chuyên đề Toán 10 Chân trời sáng tạo chi tiết trong Bài 4: Nhị thức Newton giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:
Giải bài tập Chuyên đề Toán lớp 10 Bài 4: Nhị thức Newton
Bài 5 trang 39 Chuyên đề Toán 10: Chứng minh công thức nhị thức Newton (công thức (1), trang 35 ) bằng phương pháp quy nạp toán học.
Lời giải:
+) Với n = 1, ta có: (a + b)1 = a + b =
Vậy công thức đúng với n = 1.
+) Với k ≥ 1 là một số nguyên dương tuỳ ý mà công thức đúng đúng, ta phải chứng minh công thức cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
(vì , i ∈ ℕ, k ∈ ℕ*)
Vậy công thức cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, công thức đã cho đúng với mọi n ∈ ℕ*.
Xem thêm các bài giải Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 35 Chuyên đề Toán 10: Hãy khai triển:
Khám phá 2 trang 35 Chuyên đề Toán 10: Từ các công thức khai triển:
Thực hành 2 trang 37 Chuyên đề Toán 10: Sử dụng tam giác Pascal, hãy khai triển:
Thực hành 3 trang 38 Chuyên đề Toán 10: Xác định hệ số của x2 trong khai triển (3x + 2)9
Thực hành 5 trang 38 Chuyên đề Toán 10: Chứng minh rằng, với mọi n∈ ℕ*, ta có
Bài 1 trang 39 Chuyên đề Toán 10: Khai triển biểu thức:
Bài 2 trang 39 Chuyên đề Toán 10: Tìm hệ số của x10 trong khai triển của biểu thức (2 – x)12
Bài 7 trang 39 Chuyên đề Toán 10: Một tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con?
Bài 8 trang 39 Chuyên đề Toán 10: Từ 15 bút chì màu có màu khác nhau đôi một,
Xem thêm các bài giải Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.