Với giải Câu hỏi trang 56 Toán 10 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Hàm số bạc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Toán 10 Chân trời sáng tạo trang 56 Bài 2: Hàm số bậc hai
Bài 1 trang 56 Toán 10 Tập 1: Hàm số nào sau đây là hàm số bậc hai?
a)
b)
c)
d)
Phương pháp giải
Hai số bậc hai (biến x) có dạng
Lời giải
Hàm số ở câu a) là hàm số bậc hai với
Hàm số ở câu b), c) không phải là hàm số bậc hai vì chứa
Hàm số ở câu d) không phải là hàm số bậc hai vì chứa
Bài 2 trang 56 Toán 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:
a)
b)
Phương pháp giải
Hai số bậc hai (biến x) có dạng với và
Điều kiện: Bậc hai, hệ số a khác 0.
Lời giải
a) Để hàm số là hàm số bậc hai thì:
tức là
Khi đó
Vây thì hàm số đã cho là hàm số bậc hai
b) Để hàm số là hàm số bậc hai thì:
tức là
Khi đó
Vây thì hàm số đã cho là hàm số bậc hai
Phương pháp giải
Với , hàm số có bảng biến thiên dạng:
Hàm số đạt giá trị nhỏ nhất bằng tại
Lời giải
Đỉnh S có tọa độ:
Hay
Vì hàm số bậc hai có nên ta có bảng biến thiên sau:
Hàm số đạt giá trị nhỏ nhất bằng .
Bài 4 trang 56 Toán 10 Tập 1: Cho hàm số bậc hai có
a) Hãy xác định giá trị của các hệ số và
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Phương pháp giải
a) , từ đó suy ra c.
Tương tự, sử dụng giả thiết lập hệ phương trình 2 ẩn a, b.
b) Tập giá trị với D là tập xác định của hàm số
Với :
Hàm số nghịch biến trên khoảng và đồng biến trên khoảng
Lời giải
a) Ta có:
Lại có:
Từ đó ta có hệ phương trình
(thỏa mãn điều kiện )
Vậy hàm số bậc hai đó là
b) Tập giá trị
Vì nên
Đỉnh S có tọa độ:
Hay
Vì hàm số bậc hai có nên ta có bảng biến thiên sau:
Hàm số nghịch biến trên khoảng và đồng biến trên khoảng
Phương pháp giải
Đỉnh S có tọa độ:
nên ta có bảng biến thiên sau:
Hàm số đạt giá trị nhỏ nhất bằng tại
=> Tìm m để
Lời giải
Đỉnh S có tọa độ:
Ta có: , hàm số có bảng biến thiên dạng:
Hàm số đạt giá trị nhỏ nhất bằng
Vậy thì hàm số đạt giá trị nhỏ nhất bằng 5.
Bài 6 trang 56 Toán 10 Tập 1: Vẽ đồ thị các hàm số sau:
a)
b)
c)
d)
Lời giải
a)
Phương pháp giải:
+ Xác định đỉnh
+ Trục đối xứng
+ Bề lõm: quay lên trên (nếu a>0)
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải a
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai là một parabol (P):
+ Có đỉnh S với hoành độ:
+ Có trục đối xứng là đường thẳng (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì
+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).
Ta vẽ được đồ thị như hình dưới.
Lời giải b
b)
Phương pháp giải:
+ Xác định đỉnh
+ Trục đối xứng
+ Bề lõm: quay xuống dưới (a=-1<0).
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai là một parabol (P):
+ Có đỉnh S với hoành độ:
+ Có trục đối xứng là đường thẳng (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì
+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).
Ta vẽ được đồ thị như hình dưới.
Lời giải
c)
Phương pháp giải:
+ Xác định đỉnh
+ Trục đối xứng
+ Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai là một parabol (P):
+ Có đỉnh S với hoành độ:
+ Có trục đối xứng là đường thẳng (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì
+ Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua gốc tọa độ (0; 0).
Ta vẽ được đồ thị như hình dưới.
Lời giải d
d)
Phương pháp giải:
+ Xác định đỉnh
+ Trục đối xứng
+ Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai là một parabol (P):
+ Có đỉnh S với hoành độ:
+ Có trục đối xứng là đường thẳng (trùng với trục Oy);
+ Bề lõm quay lên trên vì
+ Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).
Ta vẽ được đồ thị như hình dưới.
Bài 7 trang 56 Toán 10 Tập 1: Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
Phương pháp giải
+ Xác định tọa độ giao điểm với trục tung: điểm có tọa độ (0; c).
Lời giải
Vì 4 đồ thị hàm số cắt trục tung tại 4 điểm phân biệt nên ta chỉ cần xác định tọa độ giao điểm của mỗi hàm số với trục tung là có thể phân biệt 4 đồ thị hàm số.
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2, tức là đồ thị đi qua điểm có tọa độ (0; 2) => Đồ thị là đường màu xanh lá.
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5) => Đồ thị là đường màu xanh dương.
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 7, tức là đồ thị đi qua điểm có tọa độ (0; 7) => Đồ thị là đường màu nâu đỏ.
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1) => Đồ thị là đường màu vàng.
Xem thêm các lời giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
HĐ Khởi động trang 49 Toán 10 Tập 1: Các hàm số này có đặc điểm gì?...
HĐ Khám phá 2 trang 49 Toán 10 Tập 1: a) Xét hàm số có bảng giá trị...
Bài 1 trang 56 Toán 10 Tập 1: Hàm số nào sau đây là hàm số bậc hai?...
Bài 2 trang 56 Toán 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai...
Bài 4 trang 56 Toán 10 Tập 1: Cho hàm số bậc hai có ..
Bài 6 trang 56 Toán 10 Tập 1: Vẽ đồ thị các hàm số sau...
Bài 7 trang 56 Toán 10 Tập 1: Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12...
Bài 8 trang 57 Toán 10 Tập 1: Tìm công thức của hàm số bậc hai có đồ thị như Hình 13...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.