Bạn cần đăng nhập để đánh giá tài liệu

Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD

608

Với giải Bài 12 trang 72 SBT Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD

Bài 12 trang 72 Sách bài tập Toán lớp 10 Tập 2: Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD của tam giác OAB (D thuộc đoạn AB).

a) Tính OA, OB.

b) Chứng minh rằng OD=23OA+13OB.

c) Tìm toạ độ điểm D.

Lời giải:

a) Ta có: A(3; 4), suy ra OA=3;4, do đó OA = 32+42=5.

B(8; 6), suy ra OB=8;6, do đó OB = 82+62=10.

b) Do OD là đường phân giác trong của tam giác OAB nên theo tính chất đường phân giác ta có: ADBD=OAOB=510=12.

Suy ra: BD = 2AD.

Mặt khác do D thuộc đoạn AB nên hai vectơ AD,BD ngược hướng.

Do vậy, BD=-2AD.

 BD=OD-OB;AD=OD-OA

Từ đó ta có: OD-OB=-2(OD-OA)

3OD=2OA+OB

OD=23OA+13OB (đpcm).

c) Gọi D(x; y), do OD=23OA+13OB, suy ra: Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD

Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3; 4), B(8; 6). Kẻ đường phân giác trong OD

Vậy D143;143.

Đánh giá

0

0 đánh giá