Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số

317

Với giải Bài 18 trang 73 SBT Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối năm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số

Bài 18 trang 73 Sách bài tập Toán lớp 10 Tập 2: Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số đôi một khác nhau từ 45 số: 1; 2;....; 45, chẳng hạn bạn Bình chọn bộ số {4; 12; 20; 31; 32; 33}. Sau đó, người quản trò bốc thăm ngẫu nhiên 6 quả bóng (không hoàn lại) từ một thùng kín đựng 45 quả bóng như nhau ghi các số 1; 2; ...; 45. Bộ 6 số ghi trên 6 quả bóng đó, gọi là bộ số trúng thưởng. Nếu bộ số của người chơi trùng với 4 số của bộ số trúng thưởng thì người chơi trúng giải nhì. Tính xác suất bạn Bình trúng giải nhì khi chơi.

Lời giải:

Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1; 2;....; 44; 45}.

Do đó, n(Ω) = C456.

Gọi E là biến cố: “Bạn Bình trúng giải nhì”.

E là tập hợp tất cả các tập con gồm 6 phần tử của tập {1; 2;....; 44; 45} có tính chất:

- Bốn phần tử của nó thuộc tập {4; 12; 20; 31; 32; 33};

- Hai phần tử còn lại không thuộc tập {4; 12; 20; 31; 32; 33}.

Mỗi phần tử của E được hình thành từ hai công đoạn.

Công đoạn 1: Chọn 4 phần tử trong tập {4; 12; 20; 31; 32; 33}. Có C64=15 cách chọn.

Công đoạn 2: Chọn 2 phần tử còn lại trong 39 phần tử của tập {1; 2; ....; 44; 45} \ {4; 12; 20; 31; 32; 33}. Có C392=741 cách chọn.

Theo quy tắc nhân, tập E có 15 . 741 = 11 115 phần tử. Vậy n(E) = 11 115.

Vậy xác suất bạn Bình trúng giải nhì khi chơi là:

P(E) = nEnΩ=11115C456=1111581450600,001365.

Đánh giá

0

0 đánh giá