Bạn cần đăng nhập để báo cáo vi phạm tài liệu

Toán 10 Chân trời sáng tạo trang 33 Bài 3: Nhị thức Newton

318

Với giải Câu hỏi trang 33 Toán 10 Tập 2 Chân trời sáng tạo trong Bài 3: Nhị thức Newton học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem: 

Toán 10 Chân trời sáng tạo trang 33 Bài 3: Nhị thức Newton

HĐ Khởi động trang 33 Toán 10 Tập 2: Ở Trung học cơ sở, ta đã quen thuộc với các công thức khai triển

HĐ Khởi động trang 33 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Lời giải 

Áp dụng công thức nhị thức Newton, ta có công thức khai triển của biểu thức (a+b)n với n>3 là

(a+b)n=an+Cn1an1b+Cn2an2b2+...+Cnn2a2bn2+Cnn1abn1+Cnnbn=k=0nCnkankbk

HĐ Khám phá trang 33 Toán 10 Tập 2: a) Xét công thức khai triển (a+b)2=a3+3a2b+3ab2+b3

i) Liệt kê các số hạng của khai triển trên

ii) Liệt kê các hệ số của khai triển trên

iii) Tính giá trị của C30,C31,C32,C33 (có thể sử dụng máy tính) rồi so sánh với các hệ số trên. Có nhận xét gì?

b) Hoàn thành biến đổi sau đây để tìm công thức khai triển của  (a+b)4

(a+b)4=(a+b)(a+b)3=?=?a4+?a3b+?a2b2+?ab3+?b4

Tính giá trị của C40,C41,C42,C43,C44 để viết lại công thức khai triển trên

c) Từ kết quả của câu a) và b), hãy dự đoán công thức khai triển của (a+b)5. Tính toán để kiểm tra dự đoán đó.

Lời giải 

a)

i) Các số hạng của khai triển trên là: a3,3a2b,3ab2,b3

ii) Các hệ số của khai triển trên là: 1;3;3;1

iii) Tính các giá trị C30,C31,C32,C33 ta được

C30=1,C31=3,C32=3,C33=1

Các giá trị của C30,C31,C32,C33 bằng với các hệ số của khai triển đã cho

b)

(a+b)4=(a+b)(a+b)3=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4

Tính giá trị của C40,C41,C42,C43,C44 ta được

C40=1,C41=4,C42=6,C43=4,C44=1

Vậy ta được khai triển là:

(a+b)4=a4+4a3b+6a2b2+4ab3+b4

c)

Dự đoán công thức (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

Tính lại ta có

(a+b)5=(a+b)2(a+b)3=(a2+2ab+b2)(a3+3a2b+3ab2+b3)=a5+5a4b+10a3b2+10a2b3+5ab4+b5

Vậy công thức dự đoán là chính xác.

Đánh giá

0

0 đánh giá