Với giải Câu hỏi trang 54 SBT Toán 10 Tập 1 Kết nối tri thức trong Bài 9: Tích của một vecto với một số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem:
SBT Toán 10 Kết nối tri thức trang 54 Bài 9: Tích của một vecto với một số
Lời giải:
Ta có:
+) D là trung điểm của BC nên
+) E là trung điểm của AC nên
Do đó
+) Vì nên
Mà
+) (quy tắc hiệu)
Vậy và
Lời giải:
Gọi C là điểm thoả mãn OACB là hình bình hành
Mà ∆OAB vuông cân có OA = OB nên OACB là hình vuông
OC = AB
Mà AB2 = OA2 + OB2 (định lí Pythagoras)
AB2 = a2 + a2 = 2a2
+) Có: (quy tắc hình bình hành)
+) Có:
+) Lấy điểm D sao cho nên hai vectơ , cùng hướng và OD = 2OB.
Có:
Vẽ hình chữ nhật OAED, khi đó
Mà OE2 = OD2 + DE2 (định lí Pythagoras)
OE2 = (2OB)2 + OA2
OE2 = (2a)2 + a2 = 5a2
+) Lấy điểm G sao cho
Khi đó: hai vectơ , cùng hướng và OG = 2OA;
Và hai vectơ , cùng hướng và OH = 3OB.
Có:
Mà HG2 = OG2 + OH2 (định lí Pythagoras)
HG2 = (2OA)2 + (3OB)2
HG2 = (2a)2 + (3a)2
HG2 = 13a2
a) Gọi M là trung điểm của BC. Chứng minh rằng
b) Chứng minh rằng
c) Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.
Lời giải:
a) Kẻ đường kính AD.
Hai điểm B, C thuộc đường tròn đường kính AD nên
Hay BD ⊥ AB, CD ⊥ AC
Lại có H là trực tâm ∆ABC nên BH ⊥ AC, CH ⊥ AB
BH /// CD và CH // BD
BHCD là hình bình hành (dấu hiệu nhận biết)
Hai đường chéo cắt nhau tại trung điểm của mỗi đường (tính chất hình bình hành)
Mà M là trung điểm của BC
M là trung điểm của HD
Mà O là trung điểm của AD
Khi đó OM là đường trung bình của ∆AHD
OM // AH và (tính chất đường trung bình)
Do đó hai vectơ và có:
+ Cùng phương, cùng hướng
b) Vì M là trung điểm của BC nên
Mà (câu a)
Vậy
c) Vì G là trọng tâm tam giác ABC nên
Mà (câu b)
Suy ra
Khi đó và cùng phương, cùng hướng
O, H, G thẳng hàng.
Vậy ba điểm O, H, G thẳng hàng.
Lời giải:
Với điểm O bất kì ta có:
+) (do M là trung điểm của AB)
+) (do N là trung điểm của CD)
+) (do I là trung điểm của MN)
Vậy với điểm O bất kì đều có:
Lời giải:
+) Vì M, N lần lượt là trung điểm của AB, BC
Nên MN là đường trung bình của tam giác ABC.
MN // AC và (tính chất đường trung bình)
Từ (1), (2) và (3) ta có:
(quy tắc ba điểm)
(quy tắc ba điểm)
Do đó
+) Giả sử G và G' lần lượt là trọng tâm của tam giác MPR và tam giác NQS.
Khi đó ta có: và hay
Mặt khác: theo quy tắc ba điểm ta có:
+)
+)
+)
+) Lại có (chứng minh trên)
Nên
Suy ra G và G' trùng nhau.
Vậy hai tam giác MPR và NQS có cùng trọng tâm.
Chứng minh rằng
Lời giải:
Qua M, kẻ các đường thẳng IJ // BC, HK // AC, PQ // AB.
Tam giác ABC đều nên
Mà PQ // AB nên
HK // AC nên
Tam giác MQK có: nên là tam giác đều.
Lại có MD là đường cao kẻ từ M nên MD đồng thời là đường trung tuyến
Do đó D là trung điểm của QK
(1)
Chứng minh tương tự ta cũng có:
+) (2)
+) (3)
Từ (1), (2) và (3) ta có:
Vì MI // BQ, MQ // BI nên tứ giác MIBQ là hình bình hành
Tương tự ta có
Khi đó
Lại có O là trọng tâm của tam giác ABC nên
Vậy
Bài 4.19 trang 54 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC.
a) Tìm điểm M sao cho
b) Xác định điểm N thoả mãn
Lời giải:
a)
Gọi I là trung điểm của AB.
Khi đó:
Gọi K là trung điểm của IC, khi đó:
Mà
Do đó
Suy ra M ≡ K.
Vậy M là trung điểm của IC (với I là trung điểm của AB).
b)
Ta có:
Gọi H là trung điểm của AC, khi đó
Giả sử P là điểm thỏa mãn
Khi đó
Mà
Nên
Gọi Q là điểm nằm trên cạnh AB sao cho
Do đó tứ giác AQPN là hình bình hành
Vậy điểm N cần tìm là đỉnh của hình bình hành AQPN (với Q thỏa mãn và P thỏa mãn , H là trung điểm của AC).
Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 4.19 trang 54 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC.a) Tìm điểm M sao cho ..
Bài 4.20 trang 55 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC.a) Tìm điểm K thoả mãn .
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.