Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 Bài 6: Tích vô hướng của hai vecto | Cánh diều - sách Cánh Diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 1. Mời các bạn đón xem:
Toán 10 Cánh Diều Bài 6: Tích vô hướng của hai vecto
Trong toán học, giá trị của biểu thức (không kể đơn vị đo) được gọi là gì?
Lời giải:
Giá trị của biểu thức là tích vô hướng của hai vectơ và .
I. Định nghĩa
Luyện tập 1 trang 93 Toán lớp 10 Tập: Cho tam giác ABC vuông tại A có , AB = 3 cm. Tính .
Lời giải:
Ta có tam giác ABC vuông ở A nên
.
Lại có: tan B = ⇒ AC = AB . tanB = 3 . tan 30° = .
Và sin B = ⇒ BC = .
Ta có: = = .
= = = 6 . cos 60° = 3.
Luyện tập 2 trang 95 Toán lớp 10 Tập 1: Cho tam giác ABC đều cạnh a, AH là đường cao. Tính:
a) ;
b) .
Lời giải:
a) Tam giác ABC đều nên và AB = BC = AC = a.
Lại có: .
Ta có:
Vậy .
b) Do AH là đường cao của tam giác ABC nên AH ⊥ BC.
Do đó: nên .
Luyện tập 3 trang 96 Toán lớp 10 Tập 1: Chứng minh rằng với hai vectơ bất kì , ta có:
;
;
.
Lời giải:
+ Ta có:
(bình phương vô hướng của vectơ )
(áp dụng tính chất giao hoán)
Vậy .
+ Ta có:
(bình phương vô hướng của vectơ )
(áp dụng tính chất giao hoán)
Vậy .
+ Ta có:
(áp dụng tính chất giao hoán)
.
Vậy .
III. Một số ứng dụng
Lời giải:
+ Ta chứng minh định lí thuận:
Có tam giác ABC vuông ở A, cần chứng minh BC2 = AB2 + AC2.
Tam giác ABC vuông tại A nên .
Ta có:
Suy ra: BC2 = AC2 + AB2 – 2 . AC . AB . cos
= AB2 + AC2 – 2 . AC . AB . cosA
= AB2 + AC2 – 2 . AC . AB . cos 90°
= AB2 + AC2 – 2 . AC . AB . 0
= AB2 + AC2.
Vậy BC2 = AB2 + AC2.
+ Ta chứng minh định lí đảo:
Cho tam giác ABC có BC2 = AB2 + AC2 thì tam giác ABC vuông tại A.
Ta có:
Suy ra: BC2 = AC2 + AB2 – 2 . AC . AB . cos (*)
Mà theo giả thiết ta có: BC2 = AB2 + AC2 nên thay vào (*) ta được:
BC2 = BC2 – 2 . AC . AB . cos
Suy ra: 2 . AC . AB . cos = 0
hay
Do đó: .
Vậy tam giác ABC vuông tại A.
Bài tập
A. MN = 4;
B. MN = 2;
C. MN = 16;
D. MN = 256.
Lời giải:
Đáp án đúng là: B.
Ta có:
Lại có: , do đó: – MN2 = – 4 ⇔ MN2 = 4.
Suy ra MN = 2 (MN là độ dài đoạn thẳng nên MN > 0).
Vậy MN = 2.
Bài 2 trang 98 Toán lớp 10 Tập 1: Phát biểu nào sau đây là đúng?
A. Nếu khác và thì
B. Nếu khác và thì
C. Nếu khác và thì
D. Nếu khác và thì
Lời giải:
Đáp án đúng là: C.
Với khác thì
Do đó ta có: .
Vậy khác và thì .
Bài 3 trang 98 Toán lớp 10 Tập 1: Tính trong mỗi trường hợp sau:
a) ;
b) ;
c) và cùng hướng;
d) và ngược hướng.
Lời giải:
a) Ta có: = 3 . 4 cos 30° = .
b) Ta có: = 5 . 6 cos 120° = – 15.
c) Hai vectơ và cùng hướng nên
.
d) Hai vectơ và ngược hướng nên
.
Bài 4 trang 98 Toán lớp 10 Tập 1: Cho hình vuông ABCD cạnh a. Tính các tích vô hướng sau:
a) ;
b) .
Lời giải:
a) ABCD là hình vuông nên đường chéo AC là tia phân giác của .
Do đó: .
Ta có:
= a . a . cos 45°
.
Vậy .
b) ABCD là hình vuông nên hai đường chéo AC và BD vuông góc với nhau.
Do đó: , nên .
Bài 5 trang 98 Toán lớp 10 Tập 1: Cho tam giác ABC. Chứng minh:
Lời giải:
Ta có:
.
Vậy .
Bài 6 trang 98 Toán lớp 10 Tập 1: Cho tam giác nhọn ABC, kẻ đường cao AH. Chứng minh rằng:
a) ;
b) .
Lời giải:
Tam giác ABC nhọn nên H thuộc cạnh BC.
a) Do AH là đường cao của tam giác ABC nên AH ⊥ CB.
Do đó: .
Ta có:
(tính chất giao hoán)
Do đó:
Vậy .
b) Ta có:
(tính chất giao hoán)
Suy ra:
Vậy .
Tìm tốc độ mới của máy bay (làm tròn kết quả đến hàng phần trăm theo đơn vị km/h).
Lời giải:
Giả sử vận tốc của máy bay theo hướng đông sang tây là , vận tốc của luồng gió theo hướng đông bắc sang tây nam là và vận tốc mới của máy bay chính là thỏa mãn . Ta cần tính độ dài vectơ .
Theo bài ra ta có: km/h, km/h, .
Biểu diễn bài toán như hình vẽ dưới đây:
Khi đó ta có: ABCD là hình bình hành có .
Suy ra: ; , .
Ta cần tính độ dài đoạn thẳng BD, đây chính là độ dài vectơ .
Áp dụng định lí sin trong tam giác ABD, ta có:
BD2 = AD2 + AB2 – 2 . AD . AB . cosA
= 402 + 7002 – 2 . 40 . 700 . cos135°
≈ 531 197, 98
Suy ra BD ≈ 728,83 (km/h).
Vậy tốc độ mới của máy bay sau khi gặp gió thổi là 728,83 km/h.
a) Tính .
b) Biểu diễn theo .
c) Chứng minh AM ⊥ BD.
Lời giải:
a) Ta có:
= 2 . 3 . cos60° = 3.
b) + Do M là trung điểm của BC nên với điểm A ta có:
Do đó: .
+ Ta có:
Mà
Nên
Vậy .
c) Ta có:
= 0
Suy ra: .
Vậy AM ⊥ BD.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.