Toán 10 Cánh Diều Bài 5: Tích của một số với một vecto 

784

Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 Bài 5: Tích của một số với một vecto | Cánh diều - sách Cánh Diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 1. Mời các bạn đón xem:

Toán 10 Cánh Diều Bài 5: Tích của một số với một vecto 

Câu hỏi trang 88 Toán 10

Câu hỏi khởi động trang 88 Toán lớp 10 Tập 1 Hai đoàn tàu chạy song song (Hình 58). Gọilần lượt là các vectơ mô tả vận tốc của hai đoàn tàu.

Hai đoàn tàu chạy song song (Hình 58). Gọi vectơ v1, v2 lần lượt là các vectơ

Mối liên hệ giữa hai vectơ vận tốc v1,  v2 là như thế nào? 

Lời giải:

Qua bài học này, chúng ta sẽ biết được hai vectơ vận tốc v1,  v2 cùng phương với nhau và liên hệ với nhau theo công thức: v1=k  v2 với v1,  v2 là các vectơ khác 0 và k ≠ 0.

I. Định nghĩa

Hoạt động 1 trang 88 Toán lớp 10 Tập 1: Gọi B là trung điểm của AC.

: Gọi B là trung điểm của AC. (Hình 59)

Chứng tỏ rằng AC=AB+AB.

Lời giải:

Do B là trung điểm của AC nên AB=BC

Khi đó ta có: AC=AB+BC=AB+AB

Hoạt động 2 trang 88 Toán lớp 10 Tập 1 Quan sát vectơ AB  AC, nêu mối liên hệ về hướng và độ dài của vectơ 2AB với AB.

Lời giải:

Vectơ 2AB cùng hướng với AB  2AB=2AB.

Câu hỏi trang 89 Toán 10

Luyện tập 1 trang 89 Toán lớp 10 Tập 1: Cho tam giác ABC. Hai đường trung tuyến AM và BN cắt nhau tại G. Tìm các số a, b biết: AG=aAM;  GN=bGB .

Lời giải:

Cho tam giác ABC. Hai đường trung tuyến AM và BN cắt nhau tại G. Tìm các số a, b

G là giao điểm của hai đường trung tuyến AM và BN nên G là trọng tâm của tam giác ABC. Do đó: AG = 23AM; GN = 23GB. 

+ Ta có: AG  AM là hai vectơ cùng hướng và AG=23AM

Suy ra AG=23AM.  Vậy a = 23

+ Lại có: GN  GB là hai vectơ ngược hướng và GN=12GB

Suy ra GN=12GB. Vậy b=12

II. Tính chất

Luyện tập vận dụng 2 trang 89 Toán lớp 10 Tập 1: Cho ba điểm A, B, C. Chứng minh 3AB+2BC2AB+3BC=AB .

Lời giải:

Với 3 điểm A, B, C bất kì ta có:

Ta có: 3AB+2BC2AB+3BC

=3AB+6BC2AB6BC

=3AB2AB+6BC6BC

=AB.

Vậy 3AB+2BC2AB+3BC=AB.

III. Một số ứng dụng

Câu hỏi trang 90 Toán 10

Hoạt động 3 trang 90 Toán lớp 10 Tập 1: Cho I là trung điểm của đoạn thẳng AB và điểm M tùy ý. Chứng minh rằng MA+MB=2MI .

Lời giải:

Cho I là trung điểm của đoạn thẳng AB và điểm M tùy ý. Chứng minh rằng

Do I là trung điểm của AB nên IA+IB=0.

Khi đó: 

MA+MB=MI+IA+MI+IB=2MI+IA+IB

=2MI+0=2MI

Vậy MA+MB=2MI.

Hoạt động 4 trang 90 Toán lớp 10 Tập 1: Cho G là trọng tâm của tam giác ABC và điểm M tùy ý. Chứng minh rằng MA+MB+MC=3MG .

Lời giải:

Cho G là trọng tâm của tam giác ABC và điểm M tùy ý. Chứng minh rằng

Do G là trọng tâm của tam giác ABC nên GA+GB+GC=0.

Ta có:

MA+MB+MC

=MG+GA+MG+GB+MG+GC¯

=3MG+GA+GB+GC

=3MG+0=3MG

Vậy MA+MB+MC=3MG.

Luyện tập vận dụng 3 trang 90 Toán lớp 10 Tập 1: Cho tam giác ABC có G là trọng tâm. Chứng minh AB+AC=3AG .

Lời giải:

Cho tam giác ABC có G là trọng tâm. Chứng minh vectơ AB + vectơ AC =3.vectơ AG

Do G là trọng tâm của tam giác ABC nên GA+GB+GC=0.

Ta có:

AB+AC=AG+GB+AG+GC

=2AG+GB+GC

=2AG+GB+GC+AGAG

=3AG+GB+GC+AG

=3AG+GB+GC+GA

=3AG+0=3AG.

Vậy AB+AC=3AG.

Câu hỏi trang 91 Toán 10

Hoạt động 5 trang 91 Toán lớp 10 Tập 1: Cho hai vectơ a  b khác 0 sao cho a=kb với k là số thực khác 0. Nêu nhận xét về phương của hai vectơ a  b .

Lời giải:

Ta có: a=kb với k là số thực khác 0, hai vectơ a  b khác 0

Khi đó hai vectơ a  b cùng phương

Hoạt động 6 trang 91 Toán lớp 10 Tập 1: Cho ba điểm phân biệt A, B, C.

a) Nếu ba điểm A, B, C thẳng hàng thì hai vectơ AB,  AC có cùng phương hay không? 

b) Ngược lại, nếu hai vectơ AB,  AC cùng phương thì ba điểm A, B, C có thẳng hàng hay không? 

Lời giải:

a) Giá của vectơ AB là đường thẳng AB, giá của vectơ AC là đường thẳng AC, mà A,  B, C thẳng hàng nên đường thẳng AB và AC trùng nhau. Do đó hai vectơ AB,  AC cùng phương. 

b) Hai vectơ AB,  AC cùng phương khi giá AB và AC của chúng song song hoặc trùng nhau. Trường hợp song song không thể xảy ra do hai đường thẳng AB và AC có chung giao điểm A. Vậy AB trùng vơi AC hay A, B, C thẳng hàng. 

Luyện tập vận dụng 4 trang 91 Toán lớp 10 Tập 1: Ở Hình 61, tìm k trong mỗi trường hợp sau:

a) AC=kAD,

b) BD=kDC.

Ở Hình 61, tìm k trong mỗi trường hợp sau

Lời giải:

a) Vì hai vectơ AC,  AD cùng hướng và AC = 34AD nên

AC=34AD.

b) Vì hai vectơ BD và DC ngược hướng và BD = 3DC nên

BD=3DC.

Bài tập

Câu hỏi trang 92 Toán 10

Bài 1 trang 92 Toán lớp 10 Tập 1: Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào sau đây là đúng?

A. MN=2PQ;

B. MQ=2NP;

C. MN=2PQ;

D. MQ=2NP.

Lời giải:

Đáp án đúng là: C.

Cho hình thang MNPQ, MN // PQ, MN = 2PQ. Phát biểu nào sau đây là đúng

MNPQ là hình thang với MN // PQ nên hai vectơ MN và PQ ngược hướng.

Mà MN = 2 PQ nên MN=2PQ.

Bài 2 trang 92 Toán lớp 10 Tập 1: Cho đoạn thẳng AB = 6 cm.

a) Xác định điểm C thỏa mãn AC=12AB.

b) Xác định điểm D thỏa mãn AD=12AB.

Lời giải:

a) Ta có AC=12AB, do đó AB và AC cùng hướng và AC = 12AB.

Suy ra A, B, C thẳng hàng, hơn nữa C là trung điểm của AB và AC = 3 cm. 

Cho đoạn thẳng AB = 6 cm. Xác định điểm C thỏa mãn

b) Ta có AD=12AB, do đó AD và AB ngược hướng và AD = 12AB = 3 cm.

Suy ra A, B, D thẳng hàng; D và B nằm khác phía nhau so với A.

Cho đoạn thẳng AB = 6 cm. Xác định điểm C thỏa mãn

Bài 3 trang 92 Toán lớp 10 Tập 1: Cho tam giác ABC có M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh:

a) AP+12BC=AN;

b) BC+2MP=BA.

Lời giải:

Cho tam giác ABC có M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh

a) Vì P và N lần lượt là trung điểm của AB và AC nên PN là đường trung bình của tam giác ABC.

Do đó: PN // = 12BC.

Khi đó hai vectơ PN và BC cùng hướng và PN = 12BC.

Suy ra: PN=12BC.

Do đó:  AP+12BC=AP+PN=AN.

Vậy AP+12BC=AN.

b) M và P lần lượt là trung điểm của BC và AB nên MP là đường trung bình của tam giác ABC.

Do đó: MP // = 12 AC.

Lại có hai vectơ MP và CA cùng hướng và MP = 12CA nên MP=12CA.

Hay CA=2MP.

Khi đó ta có: BC+2MP=BC+CA=BA.

Vậy BC+2MP=BA.

Bài 4 trang 92 Toán lớp 10 Tập 1: Cho tam giác ABC. Các điểm D, E thuộc cạnh BC thỏa mãn BD = DE = EC (Hình 62). Giả sử AB=a, AC=b. Biểu diễn các vectơ BC,BD,BE,AD,AE theo a,  b .

Cho tam giác ABC. Các điểm D, E thuộc cạnh BC thỏa mãn BD = DE = EC (Hình 62)

Lời giải:

+ Ta có:

BC=BA+AC=AB+AC=a+b 

+ BD = DE = EC và D, E thuộc cạnh BC nên BD = 13BC.

Mà BD  và BC cùng hướng nên BD=13BC.

Suy ra: BD=13a+b=13a+13b.

Vậy BD=13a+13b.

+ Hai vectơ BE,  BC cùng hướng và BE = 23BC nên BE=23BC.

Suy ra: BE=23a+b=23a+23b.

Vậy BE=23a+23b.

+ Ta có: 

AD=AB+BD=a+13a+13b=113a+13b=23a+13b

Vậy AD=23a+13b.

+ Ta có:

AE=AB+BE=a+23a+23b=123a+23b=13a+23b

Vậy AE=13a+23b.

Bài 5 trang 92 Toán lớp 10 Tập 1: Cho tứ giác ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD. Gọi G là trung điểm của đoạn thẳng MN, E là trọng tâm của tam giác BCD. Chứng minh:

a) EA+EB+EC+ED=4EG;

b) EA=4EG;

c) Điểm G thuộc đoạn thẳng AE và AG=34AE.

Lời giải:

Cho tứ giác ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD

a) Ta có M là trung điểm của AB nên GA+GB=2GM.

Tương tự N là trung điểm CD nên GC+GD=2GN.

Lại có G là trung điểm của MN nên GM+GN=0.

Khi đó: 

GA+GB+GC+GD=GM+GN=0

Ta có:

EA+EB+EC+ED

=EG+GA+EG+GB+EG+GC+EG+GD

=4EG+GA+GB+GC+GD

=  4EG+0

=4EG.

Vậy EA+EB+EC+ED=4EG.

b) Do E là trọng tâm của tam giác BCD nên EB+EC+ED=0.

Thay vào câu a) ta có: EA+0=4EG

Vậy EA=4EG.

c) Theo câu b ta có: EA=4EG nên hai vectơ EA,  EG cùng hướng và EA = 4EG hay EG < EA.

Do đó 3 điểm E, A, G thẳng hàng và G nằm giữa E và A.

Suy ra điểm G thuộc đoạn thẳng AE.

Vì EA = 4 EG nên AG = 34AE.

Hai vectơ AG và AE cùng hướng.

Do đó: AG=34AE.

Bài 6 trang 92 Toán lớp 10 Tập 1: Cho hình bình hành ABCD. Đặt AB=a,  AD=b . Gọi G là trọng tâm của tam giác ABC. Biểu thị các vectơ AG,  CG theo hai vectơ a,  b .

Lời giải:

Cho hình bình hành ABCD. Đặt vectơ AB =  vectơ a, vectơ AD = vectơ b . Gọi G là trọng tâm của tam giác ABC

Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD.

Khi đó O là trung điểm của AC và BD.

Do đó BO là đường trung tuyến của tam giác ABC.

Vì G là trọng tâm của tam giác ABC nên G thuộc trung tuyến BO của tam giác ABC.

Theo tính chất trọng tâm ta có: BG=23BO.

Mà BO = 12BD nên BG=23.12BD=13BD.

Hai vectơ BG,  BD cùng hướng và BG = 13BD.

Nên BG=13BD.

Ta có: AG=AB+BG=AB+13BD

=AB+13BA+AD=AB+13AB+AD

=113AB+13AD=23AB+13AD

=23a+13b

Do đó: AG=23a+13b.

Do ABCD là hình bình hành nên AC=AB+AD.

Ta có: CG=CA+AG=AC+AG

=AB+AD+AG

=a+b+23a+13b

=1+23a+1+13b

=13a23b.

Vậy CG=13a23b.

Bài 7 trang 92 Toán lớp 10 Tập 1: Cho tam giác ABC. Các điểm D, E, H thỏa mãn

DB=13BC,AE=13AC,AH=23AB.

a) Biểu thị mỗi vectơ AD,  DH,  HE theo hai vectơ AB,  AC.

b) Chứng minh D, E, H thẳng hàng.

Lời giải:

 DB=13BC nên DB và BC cùng hướng và DB=13BC.

AE=13AC nên AE,   AC cùng hướng và AE = 13AC.

AH=23AB nên AH,  AB cùng hướng và AH=23AB.

Cho tam giác ABC. Các điểm D, E, H thỏa mãn

a) + Ta có

AD=AB+BD=AB+DB

 DB=13BC.

Do đó:

AD=AB13BC

=AB13BA+AC

=AB13BA13AC

=AB13AB13AC

=AB+13AB13AC

=43AB13AC.

Suy ra: AD=43AB13AC.

+ Ta có:

DH=DA+AH=AD+AH

 AH=23AB, AD=43AB13AC.

Do đó:

DH=43AB13AC+23AB

=43AB+13AC+23AB

=2343AB+13AC

 

=23AB+13AC

Vậy DH=23AB+13AC.

+ Ta có:

HE=HA+AE

=AH+AE

 AE=13AC, AH=23AB.

Do đó: 

HE=23AB+13AC

=23AB+13AC

Vậy HE=23AB+13AC.

b) Theo câu a, ta có: DH=23AB+13AC và HE=23AB+13AC.

Do đó: DH=HE.

Suy ra D, H, E thẳng hàng, hơn nữa H là trung điểm của DE.

 

Đánh giá

0

0 đánh giá