Toptailieu biên soạn và giới thiệu lời giải Toán 8 Bài 3 (Chân trời sáng tạo): Hằng đẳng thức đáng nhớ hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi SGK Toán 8 Bài 3 từ đó học tốt môn Toán 8.
Toán 8 (Chân trời sáng tạo) Bài 3: Hằng đẳng thức đáng nhớ
Khởi động trang 18 Toán 8 Tập 1: Hãy tính nhanh:
Bạn nữ: “Đáp số là 3 000 và 9 996”.
Bạn nam: “Trời! Bạn làm thế nào mà nhanh vậy?”
Lời giải:
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
652 – 352 = (65 + 35) . (65 – 35) = 100 . 30 = 3 000.
102 . 98 = (100 + 2) . (100 – 2) = 1002 – 22 = 10 000 – 4 = 9 996.
1. Bình phương của một tổng, một hiệu
Kết quả của mỗi bạn có đúng không? Giải thích.
b) Thực hiện phép nhân và rút gọn đa thức của bạn An.
c) Bằng cách làm tương tự ở câu b), có thể biến đổi biểu thức (a − b)2 thành biểu thức nào?
Lời giải:
a) Ta xét các cách tính diện tích của các phần tô màu trong Hình 1 như sau:
Cách 1: Tính diện tích của hình vuông được ghép bởi 4 hình:
Cạnh của hình vuông ABCD được tạo thành là: a + b.
Diện tích S của các phần tô màu chính là diện tích của hình vuông ABCD, và bằng:
S = (a + b)2 .
Do đó kết quả của bạn An là đúng.
Cách 2: Tính diện tích mỗi hình:
Diện tích hình vuông màu vàng AEHG là: a2.
Diện tích hình vuông màu xanh HICK là: b2.
Diện tích hình chữ nhật màu hồng EBIH là: ab.
Diện tích hình chữ nhật màu hồng GHKD là: ba.
Diện tích S của các phần tô màu là: a2 + b2 + ab + ba.
Do đó kết quả của bạn Mai là đúng.
Cách 3: Tính tổng diện tích hai hình chữ nhật ABIG và GICD (hình vẽ dưới đây).
Diện tích hình chữ nhật ABIG là: a.(a + b) = a.a + a.b = a2 + ab.
Diện tích hình chữ nhật GICD là: (a + b).b = a.b + b.b = ab + b2.
Diện tích S của các phần tô màu là: a2 + ab + ab + b2 = a2 + 2ab + b2.
Vậy kết quả của bạn Bình là đúng.
Lưu ý: Có nhiều cách tính diện tích S của các phần tô màu để khẳng định kết quả của cả ba bạn đều đúng.
b) Ta có: S = (a + b)2
= (a + b).(a + b)
= a.(a + b) + b.(a + b)
= a.a + a.b + b.a + b.b
= a2 + 2ab + b2.
c) Ta có: (a – b)2
= (a – b).(a – b)
= a.(a – b) – b.(a – b)
= a.a – a.b – b.a + b.b
= a2 – 2ab + b2.
Thực hành 1 trang 19 Toán 8 Tập 1: Viết các biểu thức sau thành đa thức:
Lời giải:
a) (3x + 1)2
= (3x)2 + 2.3x.1 + 12
= 9x2 + 6x + 1.
b) (4x + 5y)2
= (4x)2 + 2.4x.5y + (5y)2
= 16x2 + 40xy + 25y2.
c)
.
d) (–x + 2y2)2
= (–x)2 + 2.(–x).2y2 + (2y2)2
= x2 – 4xy2 + 4y4.
a) a2 + 10ab + 25b2;
b) 1 + 9a2 – 6a.
Lời giải:
a) a2 + 10ab + 25b2
= a2 + 2.a.5b + (5b)2
= (a + 5b)2.
b) 1 + 9a2 – 6a
= 1 – 6a + 9a2
= 12 – 2.1.3a + (3a)2
= (1 – 3a)2.
Hoặc ta có thể viết như sau:
1 + 9a2 – 6a
= 9a2 – 6a + 1
= (3a)2 – 2.3a.1 + 12
= (3a – 1)2.
Thực hành 3 trang 19 Toán 8 Tập 1: Tính nhanh:
a) 522;
b) 982.
Lời giải:
a) 522 = (50 + 2)2 = 502 + 2.50.2 + 22 = 2 500 + 200 + 4 = 2 704.
b) 982 = (100 – 2)2 = 1002 – 2.100.2 + 22 = 10 000 – 400 + 4 = 9 604.
Vận dụng 1 trang 19 Toán 8 Tập 1:
Lời giải:
a) Mảnh vườn hình vuông có cạnh 10 m được mở rộng cả hai cạnh thêm x (m) nên mảnh vườn lúc này có dạng hình vuông với độ dài cạnh là 10 + x (m).
Diện tích mảnh vườn sau khi mở rộng là:
(10 + x)2 = 102 + 2.10.x + x2 = 100 + 20x + x2 (m2).
Vậy biểu thức biểu thị diện tích mảnh vườn sau khi mở rộng là 100 + 20x + x2 (m2).
b) Mảnh vườn hình vuông trước khi mở rộng có độ dài cạnh là: x – 5 (m).
Diện tích mảnh vườn hình vuông trước khi mở rộng là:
(x – 5)2 = x2 – 2.x.5 + 52 = x2 – 10x + 25 (m2).
Vậy biểu thức biểu thị diện tích mảnh vườn trước khi mở rộng là x2 – 10x + 25 (m2).
2. Hiệu của hai bình phương
Lời giải:
a) Ta đặt tên các điểm trên Hình 3 như hình vẽ dưới đây.
• Diện tích hình vuông ABCD là: a2.
Diện tích hình vuông EGHD là: b2.
Diện tích phần tô màu ở Hình 3a là: a2 – b2.
• Chiều dài của hình chữ nhật trong Hình 3b là: a + b.
Chiều rộng của hình chữ nhật trong Hình 3b là: a – b.
Diện tích hình chữ nhật (phần tô màu) trong Hình 3b là: (a + b)(a – b).
b) Ta có:
(a + b)(a – b) = a.(a – b) + b.(a – b) = a.a – ab + ba – b.b = a2 – b2.
Vậy diện tích của hai hình trong Hình 3a và Hình 3b trùng nhau.
Thực hành 4 trang 20 Toán 8 Tập 1: Thực hiện các phép nhân:
Lời giải:
a) (4 – x).(4 + x) = 42 – x2 = 16 – x2.
b) (2y + 7z).(2y – 7z) = (2y)2 – (7z)2 = 4y2 – 49z2.
c) (x + 2y2).(x – 2y2) = x2 – (2y2)2 = x2 – 4y4.
Thực hành 5 trang 20 Toán 8 Tập 1: Tính nhanh:
Lời giải:
a) 82 . 78 = (80 + 2).(80 – 2) = 802 – 22 = 6 400 – 4 = 6 396.
b) 87 . 93 = (90 – 3).(90 + 3) = 902 – 32 = 8 100 – 9 = 8 091.
c) 1252 – 252 = (125 + 25).(125 – 25) = 150 . 100 = 15 000.
Vận dụng 2 trang 20 Toán 8 Tập 1: Giải đáp câu hỏi ở Hoạt động khởi động (trang 18).
Lời giải:
Ta tính nhanh các phép tính như sau:
652 – 352 = (65 + 35) . (65 – 35) = 100 . 30 = 3 000.
102 . 98 = (100 + 2) . (100 – 2) = 1002 – 22 = 10 000 – 4 = 9 996.
3. Lập phương của một tổng, một hiệu
(a + b)3 = (a + b)(a + b)2
= (a + b)(…)
= …
(a – b)3 = (a – b)(a – b)2
= (a – b)(…)
= …
Lời giải:
(a + b)3 = (a + b)(a + b)2
= (a + b)(a2 + 2ab + b2)
= a(a2 + 2ab + b2) + b(a2 + 2ab + b2)
= a.a2 + a.2ab + a.b2 + b.a2 + b.2ab + b.b2
= a3 + 2a2b + ab2 + a2b + 2ab2 + b3
= a3 + (2a2b + a2b) + (ab2 + 2ab2) + b3
= a3 + 3a2b + 3ab2 + b3.
(a – b)3 = (a – b)(a – b)2
= (a – b)(a2 – 2ab + b2)
= a(a2 – 2ab + b2) – b(a2 – 2ab + b2)
= a.a2 – a.2ab + a.b2 – b.a2 + b.2ab – b.b2
= a3 – 2a2b + ab2 – a2b + 2ab2 – b3
= a3 – (2a2b + a2b) + (ab2 + 2ab2) – b3
= a3 – 3a2b + 3ab2 – b3.
Thực hành 6 trang 21 Toán 8 Tập 1: Tính:
a) (x + 2y)3;
b) (3y – 1)3.
Lời giải:
a) (x + 2y)3
= x3 + 3.x2.2y + 3.x.(2y)2 + (2y)3
= x3 + 6x2y + 12xy2 + 8y3.
b) (3y – 1)3
= (3y)3 – 3.(3y)2.1 + 3.3y.12 – 13
= 27y3 – 27y2 + 9y – 1.
Lời giải:
Phần lòng trong của thùng chứa có dạnh hình lập phương với độ dài cạnh là x – 3 – 3 = x – 6 (cm).
Thể tích phần lòng trong của thùng là:
(x – 6)3 = x3 – 3.x2.6 + 3.x.62 – 63
= x3 – 18x2 + 108x – 216 (cm3).
Vậy dung tích (sức chứa) của thùng là x3 – 18x2 + 108x – 216 (cm3).
4. Tổng và hiệu của hai lập phương
(a + b)3 = a3 + 3a2b + 3ab2 + b3
a3 + b3 = (a + b)3 – 3a2b – 3ab2
= (a + b)3 – 3ab(a + b)
= (a + b)(…)
= …
(a – b)3 = a3 – 3a2b + 3ab2 – b3
a3 – b3 = (a – b)3 + 3a2b – 3ab2
= (a – b)3 + 3ab(a – b)
= (a – b)(…)
= …
Lời giải:
(a + b)3 = a3 + 3a2b + 3ab2 + b3
a3 + b3 = (a + b)3 – 3a2b – 3ab2
= (a + b)3 – 3ab(a + b)
= (a + b)[(a + b)2 – 3ab]
= (a + b)(a2 + 2ab + b2 – 3ab)
= (a + b)(a2 – ab + b2).
(a – b)3 = a3 – 3a2b + 3ab2 – b3
a3 – b3 = (a – b)3 + 3a2b – 3ab2
= (a – b)3 + 3ab(a – b)
= (a – b)[(a – b)2 + 3ab]
= (a – b)(a2 – 2ab + b2 + 3ab)
= (a – b)(a2 + ab + b2).
Thực hành 7 trang 21 Toán 8 Tập 1: Viết các đa thức sau dưới dạng tích:
a) 8y3 + 1;
b) y3 – 8.
Lời giải:
a) 8y3 + 1 = (2y)3 + 1
= (2y + 1)[(2y)2 – 2y.1 + 12]
= (2y + 1)(4y2 – 2y + 1)
b) y3 – 8 = y3 – 23
= (y – 2)(y2 + y.2 + 22)
= (y – 2)(y2 + 2y + 4).
Thực hành 8 trang 21 Toán 8 Tập 1: Tính:
a) (x + 1)(x2 – x + 1);
b) .
Lời giải:
a) (x + 1)(x2 – x + 1)
= x3 + 13
= x3 + 1.
b) .
.
Lời giải:
Thể tích của khối lập phương có cạnh bằng 2x + 1 là: (2x + 1)3.
Thể tích của khối lập phương có cạnh bằng x + 1 là: (x + 1)3.
Cách 1: Thể tích phần còn lại là:
(2x + 1)3 – (x + 1)3
= (2x)3 + 3.(2x)2.1 + 3.2x.12 + 13 – (x3 + 3.x2.1 + 3.x.12 + 13)
= 8x3 + 12x2 + 6x + 1 – x3 – 3x2 – 3x – 1
= (8x3 – x3) + (12x2 – 3x2) + (6x – 3x) + (1 – 1)
= 7x3 + 9x2 + 3x.
Cách 1: Thể tích phần còn lại là:
(2x + 1)3 – (x + 1)3
= [(2x + 1) – (x + 1)].[(2x + 1)2 + (2x + 1).(x + 1) + (x + 1)2]
= [2x + 1 – x – 1].[(2x)2 + 2.2x.1 + 12 + (2x.x + 2x.x + 1.x + 1.1) + x2 + 2.x.1 + 12]
= x.[4x2 + 4x + 1 + 2x2 + 3x + 1 + x2 + 2x + 1]
= x.[(4x2 + 2x2 + x2) + (4x + 3x + 2x) + (1 + 1 + 1)]
= x.[7x2 + 9x + 3]
= 7x3 + 9x2 + 3x.
Bài tập
Bài 1 trang 22 Toán 8 Tập 1: Tính:
Lời giải:
a) (3x + 4)2
= (3x)2 + 2.3x.4 + 42
= 9x2 + 24x + 16.
b) (5x – y)2
= (5x)2 – 2.5x.y + y2
= 25x2 – 10xy + y2.
c)
.
Bài 2 trang 22 Toán 8 Tập 1: Viết các biểu thức sau thành bình phương của một tổng hoặc một hiệu:
Lời giải:
a) x2 + 2x + 1
= x2 + 2.x.1 + 12
= (x + 1)2.
b) 9 – 24x + 16x2
= 32 – 2.3.4x + (4x)2
= (3 – 4x)2.
Ta cũng có thể viết như sau:
9 – 24x + 16x2
= 16x2 – 24x + 9
= (4x)2 – 2.4x.3 + 32
= (4x – 3)2.
c)
.
Bài 3 trang 22 Toán 8 Tập 1: Viết các biểu thức sau thành đa thức:
Lời giải:
a) (3x – 5)(3x + 5)
= (3x)2 – 52
= 9x2 – 25.
b) (x – 2y)(x + 2y)
= x2 – (2y)2
= x2 – 4y2.
c)
.
b) Viết biểu thức tính thể tích của khối lập phương có cạnh bằng 3x − 2 dưới dạng đa thức.
Lời giải:
a) Biểu thức tính diện tích của hình vuông có cạnh bằng 2x + 3 là:
(2x + 3)2 = (2x)2 + 2.2x.3 + 32 = 4x2 + 12x + 9.
b) Biểu thức tính thể tích của khối lập phương có cạnh bằng 3x − 2 là:
(3x – 2)3 = (3x)3 – 3.(3x)2.2 + 3.3x.22 – 23
= 27x3 – 54x2 + 36x – 8.
Bài 5 trang 22 Toán 8 Tập 1: Tính nhanh:
Lời giải:
a) 38 . 42 = (40 – 2).(40 + 2) = 402 – 22 = 1 600 – 4 = 1 596.
b) 1022 = (100 + 2)2 = 1002 + 2.100.2 + 22 = 10 000 + 400 + 4 = 10 404.
c) 1982 = (200 – 2)2 = 2002 – 2.200.2 + 22 = 40 000 – 800 + 4 = 39 204.
d) 752 – 252 = (75 + 25).(75 – 25) = 100 . 50 = 5 000.
Bài 6 trang 22 Toán 8 Tập 1: Viết các biểu thức sau thành đa thức:
a) (2x – 3)3;
b) (a + 3b)3;
c) (xy –1)3.
Lời giải:
a) (2x – 3)3
= (2x)3 – 3.(2x)2.3 + 3.2x.32 – 33
= 8x3 – 36x2 + 54x – 8.
b) (a + 3b)3
= a3 + 3.a2.3b + 3.a.(3b)2 + (3b)3
= a3 + 9a2b + 27ab2 + 27b3.
c) (xy –1)3
= (xy)3 – 3.(xy)2.1 + 3.xy.12 – 13
= x3y3 – 3x2y2 + 3xy – 1.
Bài 7 trang 22 Toán 8 Tập 1: Viết các biểu thức sau thành đa thức:
a) (a – 5)(a2 + 5a + 25);
b) (x + 2y)(x2 – 2xy + 4y2).
Lời giải:
a) (a – 5)(a2 + 5a + 25)
= (a – 5)(a2 + a.5 + 52)
= a3 – 53
= a3 – 125.
b) (x + 2y)(x2 – 2xy + 4y2)
= (x + 2y).[x2 – x.2y + (2y)2]
= x3 + (2y)3
= x3 + 8y3.
Bài 8 trang 22 Toán 8 Tập 1: Viết các biểu thức sau thành đa thức:
Lời giải:
a) (a – 1)(a + 1)(a2 + 1)
= (a2 – 1)(a2 + 1)
= (a2)2 – 12
= a4 – 1.
b) (xy + 1)2 – (xy – 1)2
= [(xy + 1) + (xy – 1)].[(xy + 1) – (xy – 1)]
= [xy + 1 + xy – 1].[xy + 1 – xy + 1]
= 2xy.2
= 4xy.
Bài 9 trang 22 Toán 8 Tập 1: a) Cho x + y = 12 và xy = 35. Tính (x − y)2.
b) Cho x – y = 8 và xy = 20. Tính (x + y)2.
c) Cho x + y = 5 và xy = 6. Tính x3 + y3.
d) Cho x – y = 3 và xy = 40. Tính x3 – y3.
Lời giải:
a) Ta có: (x − y)2 = x2 – 2xy + y2
= x2 + 2xy + y2 – 4xy
= (x + y)2 – 4xy
Thay x + y = 12 và xy = 35 vào biểu thức trên ta có:
(x − y)2 = 122 – 4.35 = 144 – 140 = 4.
b) Ta có: (x + y)2 = x2 + 2xy + y2
= x2 – 2xy + y2 + 4xy
= (x – y)2 + 4xy
Thay x – y = 8 và xy = 20 vào biểu thức trên ta có:
(x + y)2 = 82 + 4.20 = 64 + 80 = 144.
c) Ta có: x3 + y3 = (x + y).(x2 – xy + y2)
= (x + y).(x2 + 2xy + y2 – 3xy)
= (x + y).[(x + y)2 – 3xy]
Thay x + y = 5 và xy = 6 vào biểu thức trên ta có:
x3 + y3 = 5.(52 – 3.6) = 5.(25 – 18) = 5.7 = 35.
d) Ta có: x3 – y3 = (x – y).(x2 + xy + y2)
= (x – y).(x2 – 2xy + y2 + 3xy)
= (x – y).[(x – y)2 + 3xy]
Thay x – y = 3 và xy = 40 vào biểu thức trên ta có:
x3 – y3 = 3.(32 – 3.40) = 3.(9 – 120) = 5.(–111) = –555.
a) Chiều dài và chiều rộng tăng thêm a cm?
b) Chiều dài, chiều rộng, chiều cao đều tăng thêm a cm?
Lời giải:
Thể tích hình hộp chữ nhật có chiều dài, chiều rộng, chiều cao đều bằng 5 cm là:
53 = 125 (cm3).
a) Chiều dài của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).
Chiều rộng của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).
Thể tích hình hộp chữ nhật lúc sau là:
(5 + a).(5 + a).5 = (5 + a)2.5
= (52 + 2.5.a + a2).5
= (25 + 10a + a2).5
= 25.5 + 10a.5 + a2.5
= 125 + 50a + 5a2 (cm3).
Khi đó thể tích của hình hộp chữ nhật đã tăng thêm là:
125 + 50a + 5a2 – 125 = 5a2 + 50a (cm3).
b) Chiều cao của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).
Thể tích hình hộp chữ nhật lúc sau là:
(5 + a).(5 + a).(5 + a) = (5 + a)3
= 53 + 3.52.a + 3.5.a2 + a3
= 125 + 75a + 15a2 + a3 (cm3).
Khi đó thể tích của hình hộp chữ nhật đã tăng thêm là:
125 + 75a + 15a2 + a3 – 125 = a3 + 15a2 + 75a (cm3).
Xem thêm các bài giải SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Đơn thức và đa thức nhiều biến
Bài 2: Các phép toán với đa thức nhiều biến
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.