Giải Toán 11 trang 18 Tập 1 (Cánh Diều)

136

Với giải SGK Toán 11 Cánh Diều trang 18 chi tiết trong Bài 2: Các phép biến đổi lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 18 Tập 1 (Cánh Diều)

Hoạt động 4 trang 18 Toán 11 Tập 1: Tính sin2a, cos2a, tan2a bằng cách thay b = a trong công thức cộng.

Lời giải:

Ta có:

• sin2a = sin(a + a) = sinacosa + cosasina = 2sinacosa;

• cos2a = cos(a + a) = cosacosa – sinasina = cos2a – sin2a;

• Khi các biểu thức đều có nghĩa thì

tan2a = tan(a+a) = tana+tana1tanatana=2tana1tan2a .

Luyện tập 4 trang 18 Toán 11 Tập 1: Cho tana2 = -2. Tính tana.

Lời giải:

Áp dụng công thức nhân đôi, ta có:

tana = 2tana21tan2a2=2.2122=43=43.

Luyện tập 5 trang 18 Toán 11 Tập 1: Tính: sinπ8, cosπ8.

Lời giải:

Áp dụng công thức hạ bậc, ta có:

Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác (ảnh 6)

Mà sinπ8>0 nên sinπ8224=222.

Toán 11 Bài 2 (Cánh diều): Các phép biến đổi lượng giác (ảnh 7)

Mà cosπ8>0 nên cosπ8=2+24=2+22.

III. Công thức biến đổi tích thành tổng

Hoạt động 5 trang 18 Toán 11 Tập 1: Sử dụng công thức cộng, rút gọn mỗi biểu thức sau:

cos(a + b) + cos(a – b); cos(a + b) – cos(a – b); sin(a + b) + sin(a – b).

Lời giải:

Ta có:

• cos(a + b) + cos(a – b)

= (cosa cosb – sina sinb) + (cosa cosb + sina sinb)

= cosa cosb – sina sinb + cosa cosb + sina sinb

= 2cosa cosb.

• cos(a + b) – cos(a – b)

= (cosa cosb – sina sinb) – (cosa cosb + sina sinb)

= cosa cosb – sina sinb – cosa cosb – sina sinb

= –2sina sinb.

• sin(a + b) + sin(a – b)

= (sina cosb + cosa sinb) + (sina cosb ‒ cosa sinb)

= sina cosb + cosa sinb + sina cosb ‒ cosa sinb

= 2sina cosb.

Vậy cos(a + b) + cos(a – b) = 2cosa cosb;

cos(a + b) – cos(a – b) = –2sina sinb;

sin(a + b) + sin(a – b) = 2sina cosb.

Đánh giá

0

0 đánh giá