Với giải SGK Toán 8 Cánh Diều trang 107 chi tiết trong Bài 4: Hình bình hành giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Giải Toán 8 trang 107 Tập 1 (Cánh Diều)
Luyện tập 2 trang 107 Toán 8 Tập 1: Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O thoả mãn OA = OC và . Chứng minh tứ giác ABCD là hình bình hành.
Lời giải:
• Xét ΔOAD và ΔOCB có:
(giả thiết);
OA = OC (giả thiết);
(đối đỉnh)
Do đó ΔOAD = ΔOCB (g.c.g)
Suy ra OD = OB (hai cạnh tương ứng)
• Xét tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường
Do đó ABCD là hình bình hành.
Bài tập
Bài 1 trang 107, 108 Toán 8 Tập 1: Cho tứ giác ABCD có . Kẻ tia Ax là tia đối của tia AB. Chứng minh:
a) ;
b) ; AD // BC;
c) Tứ giác ABCD là hình bình hành.
Lời giải:
a) Xét tứ giác ABCD có:
(tổng các góc của một tứ giác)
Mà , (giả thiết)
Nên
.
Vậy .
b) Ta có (hai góc kề bù)
Mà (câu a)
Suy ra
Mà hai góc trên ở vị trí đồng vị nên AD // BC.
c) Xét tứ giác ABCD có: , (giả thiết)
Do đó tứ giác ABCD là hình bình hành (dấu hiệu nhận biết).
Xem thêm các bài giải Toán 8 Cánh Diều hay, chi tiết khác:
Khởi động trang 105 Toán 8 Tập 1: Trong thiết kế tay vịn cầu thang (Hình 34), người ta thường để các cặp thanh sườn song song với nhau, các cặp thanh trụ song song với nhau, tạo nên các hình bình hành.
Hoạt động 1 trang 105 Toán 8 Tập 1: Cho biết các cặp cạnh đối AB và CD, AD và BC của tứ giác ABCD ở Hình 35 có song song với nhau hay không.
Hoạt động 2 trang 106 Toán 8 Tập 1: Cho hình bình hành ABCD (Hình 37).a) Hai tam giác ABD và CDB có bằng nhau hay không? Từ đó, hãy so sánh các cặp đoạn thẳng: AB và CD; DA và BC.
Luyện tập 1 trang 106 Toán 8 Tập 1: Cho hình bình hành ABCD có , AB = 4 cm, BC = 5 cm. Tính số đo mỗi góc và độ dài các cạnh còn lại của hình bình hành ABCD.
Hoạt động 3 trang 106, 107 Toán 8 Tập 1: a) Cho tứ giác ABCD có AB = CD, BC = DA (Hình 39).• Hai tam giác ABC và CDA có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: và ; và .
Luyện tập 2 trang 107 Toán 8 Tập 1: Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O thoả mãn OA = OC và . Chứng minh tứ giác ABCD là hình bình hành.
Bài 1 trang 107, 108 Toán 8 Tập 1: Cho tứ giác ABCD có. Kẻ tia Ax là tia đối của tia AB. Chứng minh:gốc ABC + gốc DAB = 180
Bài 2 trang 108 Toán 8 Tập 1: Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là trung điểm của GB và GC. Chứng minh tứ giác PQMN là hình bình hành.
Bài 3 trang 108 Toán 8 Tập 1: Cho hai hình bình hành ABCD và ABMN (Hình 42). Chứng minh: CD = MN;
Bài 4 trang 108 Toán 8 Tập 1: Để đo khoảng cách giữa hai vị trí A, B ở hai phía của một toà nhà mà không thể trực tiếp đo được, người ta làm như sau
Bài 5 trang 108 Toán 8 Tập 1: Bạn Hoa vẽ tam giác ABC lên tờ giấy sau đó cắt một phần tam giác ở phía góc C (Hình 44). Bạn Hoa đố bạn Hùng: Không vẽ lại tam giác ABC, làm thế nào tính được độ dài các đoạn thẳng AC, BC và số đo góc ACB?
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:
Bài 2: Tứ giác
Bài 3: Hình thang cân