Với giải Bài 2 trang 108 Toán 8 Tập 1 Cánh Diều chi tiết trong Bài 4: Hình bình hành giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Bài 2 trang 108 Toán 8 Tập 1 | Cánh Diều Giải Toán lớp 8
Bài 2 trang 108 Toán 8 Tập 1: Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là trung điểm của GB và GC. Chứng minh tứ giác PQMN là hình bình hành.
Lời giải:
• Xét ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G (giả thiết) nên G là trọng tâm của ΔABC.
Suy ra ; (tính chất trọng tâm của tam giác) (1)
Mà P là trung điểm của GB (giả thiết) nên (2)
Q là trung điểm của GC (giả thiết) nên (3)
Từ (1), (2) và (3) suy ra GM = GP và GN = GQ.
• Xét tứ giác PQMN có: GM = GP và GN = GQ (chứng minh trên)
Do đó tứ giác PQMN có hai đường chéo MP và NQ cắt nhau tại trung điểm G của mỗi đường nên là hình bình hành.
Xem thêm các bài giải Toán 8 Cánh Diều hay, chi tiết khác:
Bài 3 trang 108 Toán 8 Tập 1: Cho hai hình bình hành ABCD và ABMN (Hình 42). Chứng minh: CD = MN;
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.