Với giải Bài 4 trang 19 Chuyên đề Toán 11 Chân trời sáng tạo chi tiết trong Bài 3: Phép đối xứng trục giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 3)2 + (y – 4)2 = 25
Bài 4 trang 19 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 3)2 + (y – 4)2 = 25 và đường thẳng ∆: 2x + 3y + 4 = 0.
a) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Ox.
b) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Oy.
c) Tìm ảnh của (C) và ∆ qua phép đối xứng trục d: x – y – 3 = 0.
Lời giải:
Đường tròn (C) có tâm I(3; 4), bán kính R = 5.
a)
⦁ Gọi (C1) là ảnh của (C) qua ĐOx, khi đó (C1) có tâm I1 là ảnh của I(3; 4) ĐOx và bán kính R1 = R = 5.
Ta có I1 = ĐOx(I).
Suy ra Ox là đường trung trực của đoạn II1
Do đó hai điểm I(3; 4) và I1 có cùng hoành độ và có tung độ đối nhau.
Vì vậy tọa độ I1(3; –4).
Vậy ảnh của đường tròn (C) qua ĐOx là đường tròn (C1) có phương trình là:
(x – 3)2 + (y + 4)2 = 25.
⦁ Trục Ox: y = 0.
Với y = 0, ta có 2x + 3.0 + 4 = 0 ⇔ x = –2.
Suy ra giao điểm của ∆ và trục Ox là điểm P(–2; 0).
Khi đó P = ĐOx(P).
Chọn M(1; –2) ∈ ∆.
Gọi M1 và ∆1 theo thứ tự là ảnh của M và ∆ qua ĐOx.
Ta thấy Ox là đường trung trực của đoạn MM1.
Do đó hai điểm M(1; –2) và M1 có cùng hoành độ và có tung độ đối nhau.
Vì vậy tọa độ M1(1; 2).
Ta có .
Đường thẳng ∆1 có vectơ chỉ phương .
Suy ra ∆1 có vectơ pháp tuyến .
Vậy đường thẳng ∆1 đi qua P(–2; 0) và có vectơ pháp tuyến nên có phương trình là:
2(x + 2) – 3(y – 0) = 0 hay 2x – 3y + 4 = 0.
b)
⦁ Gọi (C2) là ảnh của (C) qua ĐOy, khi đó (C2) có tâm I2 là ảnh của I(3; 4) qua ĐOy và bán kính R2 = R = 5.
Ta có I2 = ĐOy(I).
Suy ra Oy là đường trung trực của đoạn II2.
Do đó hai điểm I(3; 4) và I2 có cùng tung độ và có hoành độ đối nhau.
Vì vậy tọa độ I2(–3; 4).
Vậy ảnh của đường tròn (C) qua ĐOy là đường tròn (C2) có phương trình là:
(x + 3)2 + (y – 4)2 = 25.
⦁ Trục Oy: x = 0.
Với x = 0, ta có 2.0 + 3y + 4 = 0 ⇔ .
Suy ra giao điểm của ∆ và trục Oy là điểm .
Khi đó Q = ĐOy(Q).
Chọn M(1; –2) ∈ ∆.
Gọi M2 và ∆2 theo thứ tự là ảnh của M và ∆ qua ĐOy.
Ta thấy Oy là đường trung trực của đoạn MM2.
Do đó hai điểm M(1; –2) và M2 có cùng tung độ và có hoành độ đối nhau.
Vì vậy tọa độ M2(–1; –2).
Ta có .
Đường thẳng ∆2 có vectơ chỉ phương .
Suy ra ∆2 có vectơ pháp tuyến .
Vậy đường thẳng ∆2 đi qua M2(–1; –2) và có vectơ pháp tuyến nên có phương trình là:
2(x + 1) – 3(y + 2) = 0 hay 2x – 3y – 4 = 0.
c)
⦁ Gọi (C3) là ảnh của (C) qua Đd, khi đó (C2) có tâm I3 là ảnh của I(3; 4) qua Đd và bán kính R3 = R = 5.
Ta có I3 = Đd(I).
Suy ra d là đường trung trực của đoạn II3 nên II3 ⊥ d tại trung điểm của II3.
Mà đường thẳng d: x – y – 3 = 0 có vectơ pháp tuyến .
Suy ra đường thẳng II3 có vectơ chỉ phương .
Do đó đường thẳng II3 có vectơ pháp tuyến .
Vì vậy đường thẳng II3 đi qua điểm I(3; 4) và nhận làm vectơ pháp tuyến nên có phương trình là:
1(x – 3) + 1(y – 4) = 0 ⇔ x + y – 7 = 0.
Gọi H là giao điểm của II3 và đường thẳng d.
Suy ra tọa độ H thỏa mãn hệ phương trình
Do đó tọa độ H(5; 2).
Ta có H là trung điểm II3.
Suy ra
Do đó tọa độ I3(7; 0).
Vậy ảnh của đường tròn (C) qua Đd là đường tròn (C3) có phương trình là:
(x – 7)2 + y2 = 25.
⦁ Gọi R là giao điểm của ∆ và d.
Suy ra tọa độ R thỏa mãn hệ phương trình:
Do đó tọa độ R(1; –2).
Khi đó R = Đd(R).
Chọn N(–2; 0) ∈ ∆: 2x + 3y + 4 = 0.
Gọi N’ và ∆3 theo thứ tự là ảnh của N và ∆ qua Đd.
Ta thấy d là đường trung trực của đoạn NN’.
Mà đường thẳng d: x – y – 3 = 0 có vectơ pháp tuyến .
Suy ra đường thẳng NN’ có vectơ chỉ phương .
Do đó đường thẳng NN’ có vectơ pháp tuyến .
Vì vậy đường thẳng NN’ đi qua N(–2; 0) và nhận làm vectơ pháp tuyến nên có phương trình là:
1(x + 2) + 1(y – 0) = 0 ⇔ x + y + 2 = 0.
Gọi K là giao điểm của NN’ và đường thẳng d.
Suy ra tọa độ K thỏa mãn hệ phương trình:
Do đó tọa độ .
Ta có K là trung điểm NN’.
Suy ra
Do đó tọa độ N’(3; –5).
Với R(1; –2), ta có .
Đường thẳng ∆3 có vectơ chỉ phương .
Suy ra ∆3 có vectơ pháp tuyến .
Vậy đường thẳng ∆3 đi qua N’(3; –5) và nhận làm vectơ pháp tuyến nên có phương trình là:
3(x – 3) + 2(y + 5) = 0 hay 3x + 2y + 1 = 0.
Xem thêm các bài giải Chuyên đề Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Khởi động trang 14 Chuyên đề Toán 11: Trong các hình sau, hình nào có trục đối xứng?
Khám phá 1 trang 15 Chuyên đề Toán 11: Cho đường thẳng d. Gọi f là quy tắc xác định như sau:
Vận dụng 2 trang 18 Chuyên đề Toán 11: Tìm trục đối xứng trong các hình ở Hình 10.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.