Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình x – y = 0

233

Với giải Bài 2 trang 19 Chuyên đề Toán 11 Chân trời sáng tạo chi tiết trong Bài 3: Phép đối xứng trục giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình x – y = 0

Bài 2 trang 19 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình x – y = 0 và cho điểm M(x0; y0). Tìm tọa độ điểm M’ = Đd(M).

Lời giải:

Trường hợp 1: M ∈ d.

Khi đó M = Đd(M).

Vì vậy M’ ≡ M.

Do đó M’(x0; y0).

Trường hợp 2: M ∉ d.

Theo đề, ta có M’ = Đd(M).

Suy ra d là đường trung trực của đoạn MM’, do đó d ⊥ MM’.

Đường thẳng d có vectơ pháp tuyến nd=1;1.

Vì vậy MM’ nhận nd=1;1 làm vectơ chỉ phương.

Suy ra phương trình MM’: x=x0+ty=y0t

Gọi H là giao điểm của MM’ và d.

Suy ra H là trung điểm MM’ và tọa độ H(x0 + t; y0 – t).

Ta có H ∈ d.

Suy ra x0 + t – y0 + t = 0.

⇔ t=y0x02.

Do đó tọa độ Hx0+y02;x0+y02.

Ta có H là trung điểm MM’.

Suy ra xM'=2xHxM=2.x0+y02x0=y0yM'=2yHyM=2.x0+y02y0=x0

Do đó tọa độ M’(y0; x0).

Vậy M'x0;y0  khi  MdM'y0;x0  khi  Md.

Đánh giá

0

0 đánh giá