Giải Vở thực hành Toán 8 (Kết nối tri thức) Bài 1: Đơn thức

642

Toptailieu.vn biên soạn và giới thiệu giải Giải Vở thực hành Toán 8 (Kết nối tri thức) Bài 1: Đơn thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập Toán 8. Mời các bạn cùng đón xem:

Giải Vở thực hành Toán 8 (Kết nối tri thức) Bài 1: Đơn thức

Câu 1 trang 5 VTH Toán 8 Tập 1: Cho các biểu thức A = 2(x + 1)y2; B = −0,7xyx2z3C equals open parentheses square root of 2 plus square root of 3 close parentheses y squared z y và D equals 3 x cubed z square root of y. Hai đơn thức trong số các biểu thức đã cho là:

A. A và B.

B. B và C.

C. B và D.

D. C và D.

Lời giải:

Đáp án đúng là: B

Các biểu thức là đơn thức gồm −0,7xyx2zvà open parentheses square root of 2 plus square root of 3 close parentheses y squared z y.

Vậy B và C là hai đơn thức trong 4 biểu thức trên.

Câu 2 trang 5 VTH Toán 8 Tập 1: Cho các đơn thức A = (0,3 + π)x2y; B equals 1 half x y x squared z semicolon C = −xyxz2 và D equals open parentheses square root of 2 plus 1 close parentheses x y squared z. Hai đơn thức thu gọn trong các đơn thức đã cho là:

A. A và B.

B. A và C.

C. A và D.

D. B và C.

Lời giải:

Đáp án đúng là: C

Các đơn thức thu gọn bao gồm (0,3 + π)x2y và open parentheses square root of 2 plus 1 close parentheses x y squared z.

Vậy A và D là hai đơn thức thu gọn trong các đơn thức trên.

Câu 3 trang 6 VTH Toán 8 Tập 1: Sau khi thu gọn các đơn thức A = 2xyzx; B = −3yxzy; C = 4zxyz và D = −5x2yzy, đơn thức đồng dạng với đơn thức −6x2yz là:

A. A.

B. B.

C. C.

D. D.

Lời giải:

Đáp án đúng là: A

Ta có đơn thức thu gọn của các đơn thức trên là:

A = 2xyzx = 2x2yz; B = −3yxzy = −3xy2z; C = 4zxyz = 4xyz2 và D = −5x2yzy = −5x2y2z.

Đơn thức đồng dạng với đơn thức −6x2yz là đơn thức có phần biến x2yz.

Vậy đơn thức đó là 2x2yz.

Câu 4 trang 6 VTH Toán 8 Tập 1: Chọn phương án đúng.

Cho hai đơn thức M = 5,5x3y2z và N = −1,5x3y2z. Tổng và hiệu của chúng là:

A. M + N = 4x3y2z; M – N = 6x3y2z.

B. M + N = 4x2y3z; M – N = 7x3y2z.

C. M + N = 4x3y2z; M – N = 7x3y2z.

D. M + N = 4x3y2z; M – N = 7x2y3z.

Lời giải:

Đáp án đúng là: C

Ta có:

• M + N = 5,5x3y2z + (−1,5x3y2z)

= x3y2z(5,5 − 1,5) = 4x3y2z;

• M – N = 5,5x3y2z − (−1,5x3y2z)

= (5,5 + 1,5)x3y2z = 7x3y2z.

Vậy đáp án đúng là C.

C – BÀI TẬP

Bài 1 trang 6 VTH Toán 8 Tập 1: Trong các biểu thức sau, biểu thức nào là đơn thức?

−x; (1 + x)y2open parentheses 3 plus square root of 3 close parentheses x y semicolon 0; 1 over y x squared semicolon 2 square root of x y end root.

 

Lời giải:

Các đơn thức là: negative x semicolon text    end text open parentheses 3 plus square root of 3 close parentheses x y.

Biểu thức (1 + x)y2  không phải là đơn thức vì đơn thức có dạng tích của những số và biến.

Bài 2 trang 6 VTH Toán 8 Tập 1: Cho các đơn thức:

A = 4x(−2)x2y; B = 12,75xyz; C equals open parentheses 1 plus 2 text    end text. text    end text 45 close parentheses x squared y 1 fifth y cubed semicolon D equals open parentheses 2 minus square root of 5 close parentheses x.

a) Liệt kê các đơn thức thu gọn trong các đơn thức đã cho và thu gọn các đơn thức còn lại.

b) Với mỗi đơn thức nhận được, hãy cho biết hệ số, phần biến và bậc của nó.

Lời giải:

a) Các đơn thức thu gọn là B và D. Ta thu gọn hai đơn thức còn lại:

A = 4x(−2)x2y = −8x3y; C equals open parentheses 1 plus 2.45 close parentheses x squared y 1 fifth y cubed equals 2 x squared y to the power of 4.

b) Hệ số, phần biến và bậc của từng đơn thức được ghi lại trong bảng sau:

Đơn thức

Hệ số

Phần biến

Bậc

A = −8x3y

−8

x3y

4

B = 12,75xyz

12,75

xyz

3

C = 2x2y4

2

x2y4

6

D equals open parentheses 2 – square root of 5 close parentheses x

2 minus square root of 5

x

1

Bài 3 trang 6 VTH Toán 8 Tập 1: Thu gọn rồi tính giá trị của mỗi đơn thức sau:

a) A equals open parentheses negative 2 close parentheses x squared y 1 half x y khi x = −2; y equals 1 half.                   

b) B = xyz(−0,5)y2z khi x = 4; y = 0,5; z = 2.

Lời giải:

a) A equals open parentheses negative 2 close parentheses x squared y 1 half x y equals negative x cubed y squared. Tại x = −2 và y equals 1 half ta có:

y equals 1 half A equals negative open parentheses negative 2 close parentheses cubed open parentheses 1 half close parentheses squared equals negative open parentheses negative 8 close parentheses open parentheses 1 fourth close parentheses equals 2.

b) B = xyz(−0,5)y2z = −0,5xy3z2. Tại x = 4; y = 0,5 và z = 2, ta có:

B = −0,5 . 4 . (0,5). 22 = −0,5 . 4 . 0,125 . 4 = −1.

Bài 4 trang 7 VTH Toán 8 Tập 1: Sắp xếp các đơn thức sau thành từng nhóm, mỗi nhóm chứa tất cả các đơn thức đồng dạng với nhau: 3x3y2; −0,2x2y3; 7x3y2; −4y; 3 over 4 x squared y cubed semicolon y square root of 2.

Lời giải:

Nhóm thứ nhất gồm các đơn thức 3x3y2 và 7x3y2.

Nhóm thứ hai gồm các đơn thức −0,2x2y3 và 3 over 4 x squared y cubed.

Nhóm thứ ba gồm các đơn thức −4y và y square root of 2.

Bài 5 trang 7 VTH Toán 8 Tập 1: Tính tổng của các đơn thức trong mỗi nhóm ở bài tập 4.

Lời giải:

Với nhóm thứ nhất ta có: 3x3y2 + 7x3y2 = (3 + 7)x3y= 10x3y2.

Với nhóm thứ hai ta có: – text   end text 0 comma 2 x squared y cubed plus 3 over 4 x squared y cubed equals open parentheses – text   end text 0 comma 2 plus 075 close parentheses x squared y cubed equals 0 comma 55 x squared y cubed semicolon

hoặc – text   end text 0 comma 2 x squared y cubed plus 3 over 4 x squared y cubed equals open parentheses – 2 over 10 plus 3 over 4 close parentheses x squared y cubed equals 11 over 20 x squared y cubed.

Với nhóm thứ ba ta có– 4 y plus y square root of 2 equals open parentheses – 4 plus square root of 2 close parentheses y.

Bài 6 trang 7 VTH Toán 8 Tập 1: Rút gọn rồi tính giá trị của biểu thức

S equals 1 half x squared y to the power of 5 minus 5 over 2 x squared y to the power of 5 khi x = −2 và y = 1.

Lời giải:

• Rút gọn: S equals 1 half x squared y to the power of 5 – 5 over 2 x squared y to the power of 5 equals open parentheses 1 half – 5 over 2 close parentheses x squared y to the power of 5 equals – 2 x squared y to the power of 5.

• Tại x = −2 và y = 1 ta có: S = (−2) . (−2)2. 15= (−2) . 4 . 1 = −8.

Bài 7 trang 7 VTH Toán 8 Tập 1: Tính tổng của bốn đơn thức: 2x2y3negative 3 over 5 x squared y cubed semicolon −14x2y38 over 5 x squared y cubed.

Lời giải:

Ta có: 2 x squared y cubed plus open parentheses negative 3 over 5 close parentheses x squared y cubed plus open parentheses negative 14 close parentheses x squared y cubed plus 8 over 5 x squared y cubed

equals open parentheses 2 minus 3 over 5 minus 14 plus 8 over 5 close parentheses x squared y cubedequals negative 11 x squared y cubed.

Bài 8 trang 7 VTH Toán 8 Tập 1: Một mảnh đất có dạng như phần tô màu xám trong hình bên cùng với kích thước (tính bằng mét) được ghi trên đó. Hãy tìm đơn thức (thu gọn) với hai biến x và y biểu thị diện tích của mảnh đất đã cho bằng hai cách:

Cách 1. Tính tổng diện tích của hai hình chữ nhật ABCD và EFGC.

Cách 2. Lấy diện tích của hình chữ nhật HFGD trừ đi diện tích của hình chữ nhật HEBA.

 (ảnh 2)

Lời giải:

Cách 1. Ta có SABCD = 2x . 2y = 4xy; SEFGC = 3x . y = 3xy.

Vậy diện tích mảnh đất là S = 4xy + 3xy = 7xy.

Cách 2. Ta có SHFGD = 3x . (2y + y) = 3x . 3y = 9xy;

SHEBA = 2y . (3x – 2x) = 2y . x = 2xy.

Vậy diện tích mảnh đất là S = 9xy – 2xy = 7xy.

Xem thêm các bài Giải Vở thực hành Toán 8 (Kết nối tri thức) hay, chi tiết khác:

Bài 2: Đa thức

Bài 3: Phép cộng và phép trừ đa thức

Luyện tập chung trang 13

Bài 4: Phép nhân đa thức

Bài 5: Phép chia đa thức cho đơn thức

Đánh giá

0

0 đánh giá