Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2)

328

Với Giải Câu 6 trang 18 VTH Toán 8 Tập 1 lớp 8 trong Bài 4: Phép nhân đa thức Vở thực hành Toán 8 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong Vở thực hành Toán 8.

Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2)

Bài 6 trang 18 VTH Toán 8 Tập 1: Chứng minh đẳng thức sau:

(2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

Lời giải:

Vế trái: (2x + y)(2x2 + xy – y2)

= 2x . 2x2 + 2x . xy – 2x . y2 + y . 2x2 + y . xy – y . y2

= 4x3 + 2x2y – 2xy2 + 2x2y + xy2 – y3

= 4x3 + (2x2y + 2x2y) + (xy2 – 2xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

Vế phải: (2x – y)(2x2 + 3xy + y2)

= 2x . 2x2 + 2x . 3xy + 2x . y– y . 2x2 – y . 3xy – y . y2

= 4x3 + 6x2y + 2xy– 2x2y – 3xy2 – y3

= 4x3 + (6x2y – 2x2y) + (2xy– 3xy2) – y3

= 4x3 + 4x2y – xy2 – y3.

So sánh hai kết quả, ta có điều phải chứng minh.

Đánh giá

0

0 đánh giá