SBT Toán 8 (Kết nối tri thức) Bài 4: Phép nhân đa thức

289

Toptailieu biên soạn và giới thiệu giải Sách bài tập Toán 8 Bài 4: Phép nhân đa thức sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 8 Bài 4.

SBT Toán 8 (Kết nối tri thức) Bài 4: Phép nhân đa thức

Trang 13 sách bài tập Toán 8 Tập 1

Bài 1.18 trang 13 sách bài tập Toán 8 Tập 1: Thực hiện phép nhân:

a) 0,5x2y(4x2 – 6xy + y2);

b) 3x3-6x2y+9xy2-23xy2.

Lời giải:

a) 0,5x2y(4x2 – 6xy + y2)

= 0,5x2y.4x2 ‒ 0,5x2y.6xy + 0,5x2y.y2

= 2x4y ‒ 3x3y2 + 0,5x2y3.

b) 3x3-6x2y+9xy2-23xy2

=3x3.-23xy2+-6x2y.-23xy2+9xy2.-23xy2

= ‒2x4y2 + 4x3y3 ‒ 6x2y4.

Bài 1.19 trang 13 sách bài tập Toán 8 Tập 1: Rút gọn rồi tính giá trị của biểu thức.

a) A = x(x – y + 1) + y(x + y – 1) tại x = 3; y = 3;

b) B = x(x – y2) + y(x2 – y) – (x + y)(x – y) tại x = 2; y = –0,5.

Lời giải:

a) Ta có:

A = x(x – y + 1) + y(x + y – 1)

= x.x ‒ x.y + x.1 + y.x + y.y ‒ y.1

= x2 ‒ xy + x + xy + y2 ‒ y

= x2 + y2 + x ‒ y + (‒xy+ xy)

= x2 + y2 + x ‒ y.

Tại x = 3; y = 3 ta có:

A = 32 + 32 + 3 ‒ 3 = 18.

b) B = x(x – y2) + y(x2 – y) – (x + y)(x – y)

= x.x ‒ x.y2 + y.x2 ‒ y.y ‒ [x.(x – y) + y(x – y)]

= x2 ‒ xy2 + x2y ‒ y2 ‒ [x2– xy + xy – y2]

= x2 ‒ xy2 + x2y ‒ y2 ‒ [x2 – y2]

= x2 ‒ xy2 + x2y ‒ y2 ‒ x2 + y2

= (x2 ‒ x2) ‒ xy2 + x2y + (‒ y2 + y2)

= x2y ‒ xy2.

Tại x = 2; y = –0,5 ta có:

B = 22.(–0,5) ‒ 2.(–0,5)2 = –2 – 0,5 = ‒2,5.

Trang 14 sách bài tập Toán 8 Tập 1

Bài 1.20 trang 14 sách bài tập Toán 8 Tập 1: Thực hiện phép tính:

a) (x – 2y)(x2z + 2xyz + 4y2z);

b) x2-13xy+19y2x+13y.

Lời giải:

a) (x – 2y)(x2z + 2xyz + 4y2z)

= x.(x2z + 2xyz + 4y2z) – 2y.(x2z + 2xyz + 4y2z)

= x3z + 2x2yz + 4xy2z ‒ 2x2yz ‒ 4xy2z ‒ 8y3z

= x3z + (2x2yz ‒ 2x2yz) + (4xy2z ‒ 4xy2z) ‒ 8y3z

= x3z ‒ 8y3z.

b) x2-13xy+19y2x+13y

=x2.x+13y-13xy.x+13y+19y2.x+13y

=x3+13x2y-13x2y-19xy2+19xy2+127y3

=x3+13x2y-13x2y+-19xy2+19xy2+127y3

=x3+127y3.

Bài 1.21 trang 14 sách bài tập Toán 8 Tập 1: Tìm tích của hai đa thức:

a) 2x4 – x3y + 6xy3 + 2y4 và x4 + 3x3y – y4;

b) x3y + 0,4x2y2 – xy3 và 5x2 – 2,5xy + 5y2.

Lời giải:

a) (2x4 – x3y + 6xy3 + 2y4)(x4 + 3x3y – y4)

= 2x4.(x4 + 3x3y – y4) – x3y.(x4 + 3x3y – y4) + 6xy3.(x4 + 3x3y – y4) + 2y4.(x4 + 3x3y – y4)

= 2x8 + 6x7y ‒ 2x4y4 ‒ x7y ‒ 3x6y2 + x3y5 + 6x5y3 + 18x4y4 ‒ 6xy7 + 2x4y4 + 6x3y5 ‒ 2y8

= 2x8 + (6x7y ‒ x7y) + (‒2x4y4+18x4y4 + 2x4y4) ‒ 3x6y2 + (x3y5 + 6x3y5) + 6x5y3 ‒ 6xy7‒ 2y8

= 2x8 + 5x7y + 18x4y4 ‒ 3x6y2 + 7x3y5 + 6x5y3 ‒ 6xy7‒ 2y8.

b) (x3y + 0,4x2y2 – xy3)(5x2 – 2,5xy + 5y2)

= x3y.(5x2 – 2,5xy + 5y2) + 0,4x2y2.(5x2 – 2,5xy + 5y2) – xy3.(5x2 – 2,5xy + 5y2)

= 5x5y ‒ 2,5x4y2 + 5x3y3 + 2x4y2 ‒ x3y3 + 2x2y4 ‒ 5x3y3 + 2,5x2y4 ‒ 5xy5

= 5x5y + (‒2,5x4y2 + 2x4y2) + (5x3y3 ‒ x3y3 ‒ 5x3y3) + (2x2y4 + 2,5x2y4) ‒ 5xy5

= 5x5y ‒ 0,5x4y2 ‒ x3y3 + 4,5x2y4 ‒ 5xy5.

Bài 1.22 trang 14 sách bài tập Toán 8 Tập 1: Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến:

P = x4 – (x – y)(x + y)(x2 + y2) – y4.

Lời giải:

P = x4 – (x – y)(x + y)(x2 + y2) – y4

= x4 – [(x – y)(x + y)](x2 + y2)– y4

= x4 – [x(x + y) – y(x + y)](x2 + y2)– y4

= x4 – [x2 + xy – xy – y2](x2 + y2)– y4

= x4 – (x2 ‒ y2)(x2 + y2)– y4

= x4 – (x4+x2y2 – x2y2 – y4)– y4

= x4 ‒ (x4 ‒ y4) – y4

= x4 ‒ x4 + y4 – y4

= (x4 ‒ x4) + (y4 – y4) = 0

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của các biến.

Bài 1.23 trang 14 sách bài tập Toán 8 Tập 1: Rút gọn biểu thức:

a) (x – y)(y + z)(z + x) + (x + y)(y – z)(z + x) + (x + y)(y + z)(z – x);

b) (2x + y)(2y + z)(2z + x) – (2x – y)(2y – z)(2z – x).

Lời giải:

a) Ta có M = A + B + C, trong đó:

A = (x – y)(y + z)(z + x)

= (xy + xz ‒ y2 ‒ yz)(z + x)

= xyz + x2y + xz2 + x2z ‒ y2z ‒ xy2 ‒ yz2 ‒ xyz

= (xyz ‒ xyz) + x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2

= x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2

B = (x + y)(y – z)(z + x)

= (xy ‒ xz + y2 ‒ yz)(z + x)

= xyz + x2y ‒ xz2 – x2z + y2z + xy2 ‒ yz2 ‒ xyz

= (xyz ‒ xyz) + x2y ‒ xz2 – x2z + y2z + xy2 ‒ yz2

= x2y + xy2 ‒ xz2 – x2z + y2z ‒ yz2

C = (x + y)(y + z)(z – x)

= (xy + xz + y2 + yz)(z ‒ x)

= xyz ‒ x2y + xz2 ‒ x2z + y2z ‒ xy2 + yz2 ‒ xyz

= (xyz ‒ xyz) ‒ x2y ‒ xy2 +xz2 ‒ x2z + y2z + yz2

= ‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2.

Khi đó: M = A + B + C

= x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2 + x2y + xy2 ‒ xz2 – x2z + y2z ‒ yz2‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2

= (x2y + x2y ‒ x2y) + (‒xy2 + xy2 ‒ xy2) + (xz2 ‒ xz2 + xz2) + (x2z ‒ x2z ‒ x2z) + (–y2z + y2z + y2z) + (‒yz2 ‒ yz2 + yz2)

= x2y ‒ xy2 + xz2 ‒ x2z + y2z ‒ yz2.

b) Ta có N = P ‒ Q, trong đó:

P = (2x + y)(2y + z)(2z + x)

= (4xy + 2xz + 2y2 + yz)(2z + x)

= 8xyz + 4x2y + 4xz2 + 2x2z + 4y2z + 2xy2 + 2yz2 + xyz

= (8xyz + xyz) + 4x2y + 4xz2 + 2x2z + 4y2z + 2xy2 + 2yz2

= 9xyz + 4x2y + 4y2z + 4xz2 + 2xy2 + 2yz2+ 2x2z.

Q = (2x – y)(2y – z)(2z – x)

= (4xy ‒ 2xz ‒ 2y2 + yz)(2z ‒ x)

= 8xyz ‒ 4x2y ‒ 4xz2+ 2x2z – 4y2z + 2xy2 + 2yz2 ‒ xyz

= (8xyz ‒ xyz) ‒ 4x2y ‒ 4xz2+2x2z – 4y2z + 2xy2 + 2yz2

= 7xyz ‒ 4x2y ‒ 4xz2 ‒ 4y2z + 2xy2 + 2yz2 + 2x2z.

Từ đó: N = P – Q

= 9xyz + 4x2y + 4y2z + 4xz2 + 2xy2 + 2yz2+ 2x2z‒ (7xyz ‒ 4x2y ‒ 4xz2 ‒ 4y2z + 2xy2 + 2yz2 + 2x2z)

= 9xyz + 4x2y + 4xz2 + 4y2z + 2xy2 + 2yz2 + 2x2z ‒ 7xyz + 4x2y + 4xz2 + 4y2z ‒ 2xy2 ‒ 2yz2 ‒ 2x2z

= (9xyz ‒ 7xyz) + (4x2y + 4x2y) + (4y2z + 4y2z) + (4xz2 + 4xz2) + (2xy2 ‒ 2xy2) + (2xy2 ‒ 2yz2) + (2x2z ‒ 2x2z)

= 2xyz + 8x2y + 8y2z + 8xz2..

Xem thêm các bài giải sách bài tậpToán lớp 8 Kết nối tri thức hay, chi tiết khác:

SBT Toán 8 (Kết nối tri thức) Bài 3: Phép cộng và phép trừ đa thức

SBT Toán 8 (Kết nối tri thức) Bài 5: Phép chia đa thức cho đơn thức

SBT Toán 8 (Kết nối tri thức) Bài tập cuối chương 1

SBT Toán 8 (Kết nối tri thức) Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

SBT Toán 8 (Kết nối tri thức) Bài 7: Lập phương của một tổng. Lập phương của một hiệu

Đánh giá

0

0 đánh giá