Rút gọn biểu thức: a) (x – y)(y + z)(z + x) + (x + y)(y – z)(z + x) + (x + y)(y + z)(z – x)

210

Với Giải Bài 1.23 trang 14 sách bài tập Toán 8 Tập 1 trong Bài 4: Phép nhân đa thức Sách bài tập Toán lớp 8 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 8.

 Rút gọn biểu thức: a) (x – y)(y + z)(z + x) + (x + y)(y – z)(z + x) + (x + y)(y + z)(z – x)

Bài 1.23 trang 14 sách bài tập Toán 8 Tập 1: Rút gọn biểu thức:

a) (x – y)(y + z)(z + x) + (x + y)(y – z)(z + x) + (x + y)(y + z)(z – x);

b) (2x + y)(2y + z)(2z + x) – (2x – y)(2y – z)(2z – x).

Lời giải:

a) Ta có M = A + B + C, trong đó:

A = (x – y)(y + z)(z + x)

= (xy + xz ‒ y2 ‒ yz)(z + x)

= xyz + x2y + xz2 + x2z ‒ y2z ‒ xy2 ‒ yz2 ‒ xyz

= (xyz ‒ xyz) + x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2

= x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2

B = (x + y)(y – z)(z + x)

= (xy ‒ xz + y2 ‒ yz)(z + x)

= xyz + x2y ‒ xz2 – x2z + y2z + xy2 ‒ yz2 ‒ xyz

= (xyz ‒ xyz) + x2y ‒ xz2 – x2z + y2z + xy2 ‒ yz2

= x2y + xy2 ‒ xz2 – x2z + y2z ‒ yz2

C = (x + y)(y + z)(z – x)

= (xy + xz + y2 + yz)(z ‒ x)

= xyz ‒ x2y + xz2 ‒ x2z + y2z ‒ xy2 + yz2 ‒ xyz

= (xyz ‒ xyz) ‒ x2y ‒ xy2 +xz2 ‒ x2z + y2z + yz2

= ‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2.

Khi đó: M = A + B + C

= x2y ‒ xy2 + xz2 + x2z ‒ y2z ‒ yz2 + x2y + xy2 ‒ xz2 – x2z + y2z ‒ yz2‒ x2y ‒ xy2 + xz2 ‒ x2z + y2z + yz2

= (x2y + x2y ‒ x2y) + (‒xy2 + xy2 ‒ xy2) + (xz2 ‒ xz2 + xz2) + (x2z ‒ x2z ‒ x2z) + (–y2z + y2z + y2z) + (‒yz2 ‒ yz2 + yz2)

= x2y ‒ xy2 + xz2 ‒ x2z + y2z ‒ yz2.

b) Ta có N = P ‒ Q, trong đó:

P = (2x + y)(2y + z)(2z + x)

= (4xy + 2xz + 2y2 + yz)(2z + x)

= 8xyz + 4x2y + 4xz2 + 2x2z + 4y2z + 2xy2 + 2yz2 + xyz

= (8xyz + xyz) + 4x2y + 4xz2 + 2x2z + 4y2z + 2xy2 + 2yz2

= 9xyz + 4x2y + 4y2z + 4xz2 + 2xy2 + 2yz2+ 2x2z.

Q = (2x – y)(2y – z)(2z – x)

= (4xy ‒ 2xz ‒ 2y2 + yz)(2z ‒ x)

= 8xyz ‒ 4x2y ‒ 4xz2+ 2x2z – 4y2z + 2xy2 + 2yz2 ‒ xyz

= (8xyz ‒ xyz) ‒ 4x2y ‒ 4xz2+2x2z – 4y2z + 2xy2 + 2yz2

= 7xyz ‒ 4x2y ‒ 4xz2 ‒ 4y2z + 2xy2 + 2yz2 + 2x2z.

Từ đó: N = P – Q

= 9xyz + 4x2y + 4y2z + 4xz2 + 2xy2 + 2yz2+ 2x2z‒ (7xyz ‒ 4x2y ‒ 4xz2 ‒ 4y2z + 2xy2 + 2yz2 + 2x2z)

= 9xyz + 4x2y + 4xz2 + 4y2z + 2xy2 + 2yz2 + 2x2z ‒ 7xyz + 4x2y + 4xz2 + 4y2z ‒ 2xy2 ‒ 2yz2 ‒ 2x2z

= (9xyz ‒ 7xyz) + (4x2y + 4x2y) + (4y2z + 4y2z) + (4xz2 + 4xz2) + (2xy2 ‒ 2xy2) + (2xy2 ‒ 2yz2) + (2x2z ‒ 2x2z)

= 2xyz + 8x2y + 8y2z + 8xz2..

Đánh giá

0

0 đánh giá