Với Giải trang 9 SBT Toán lớp 11 trong Bài 2: Công thức lượng giác S Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.
SBT Toán 11 trang 11 Tập 1 (Kết nối tri thức)
Bài 1.12 trang 11 SBT Toán 11 Tập 1: Chứng minh đẳng thức sau
Lời giải:
sin4 a + cos4 a = (sin2 a + cos2 a)2 – 2sin2 a cos2 a
= 1 – 2 . (sin a cos a)2
=
Vậy .
Bài 1.13 trang 11 SBT Toán 11 Tập 1: Tính giá trị của các biểu thức sau:
a) ;
b) B = sin 6° sin 42° sin 66° sin 78°.
Lời giải:
a)
.
Vậy A = 0.
b) Vì sin 78° = cos 12°; sin 66° = cos 24°; sin 42° = cos 48° nên
B = sin 6° cos 12° cos 24° cos 48°.
Nhân hai vế với cos 6° và áp dụng công thức góc nhân đôi, ta được:
cos 6° . B = cos 6° sin 6° cos 12° cos 24° cos 48°
= cos 12° cos 24° cos 48°
= sin 24° cos 24° cos 48°
= sin 48° cos 48°
= sin 96°
= sin(90° + 6°) = cos 6°.
Vậy B = .
Bài 1.14 trang 11 SBT Toán 11 Tập 1: Chứng minh rằng:
b) .
Lời giải:
a)
.
b)
.
Bài 1.15 trang 11 SBT Toán 11 Tập 1: Chứng minh rằng trong mọi tam giác ABC ta đều có
Lời giải:
.
Mặt khác, trong tam giác ABC, ta có A + B + C = π nên .
Từ đó suy ra: .
Vậy
(điều phải chứng minh).
Xem thêm các bài SBT Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 1.11 trang 10 SBT Toán 11 Tập 1: Cho cos 2x = -4/5 với pi/4
Bài 1.12 trang 11 SBT Toán 11 Tập 1: Chứng minh đẳng thức sau: .
Bài 1.13 trang 11 SBT Toán 11 Tập 1: Tính giá trị của các biểu thức sau: a) A = sin pi/9 - sin 5pi/9 + sin 7pi/9
Bài 1.14 trang 11 SBT Toán 11 Tập 1: Chứng minh rằng:a) ;
Bài 1.15 trang 11 SBT Toán 11 Tập 1: Chứng minh rằng trong mọi tam giác ABC ta đều có
Xem thêm các bài SBT Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 1: Giá trị lượng giác của góc lượng giác
Bài 4: Phương trình lượng giác cơ bản
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.