Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau

252

Với Giải Bài 1.17 trang 17 SBT Toán 11 Tập 1 trong Bài 3: Hàm số lượng giác Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau

Bài 1.17 trang 17 SBT Toán 11 Tập 1Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) y = 2 + 3|cosx|;

b) y = 2sinx  + 1;

c) y = 3 cos2 x + 4 cos2x;

d) y = sin x + cos x.

Lời giải:

a) Vì 0 ≤ |cos x| ≤ 1 nên 0 ≤ 3|cos x| ≤ 3, do đó 2 ≤ 2 + 3|cos x| ≤ 5 với mọi x ∈ ℝ.

Vậy giá trị lớn nhất của hàm số là 5, đạt được khi

|cos x| = 1 ⇔ sin x = 0 ⇔ x = kπ (k ∈ ℤ).

và giá trị nhỏ nhất của hàm số là 2, đạt được khi

cos x = 0 ⇔ x = π2  + kπ (k ∈ ℤ).

b) Điều kiện sin x ≥ 0. Vì 0 ≤ sinx  ≤ 1 nên 0 ≤ 2 sinx ≤ 2,

do đó 1 ≤ 2 sinx + 1 ≤ 3 với mọi x thoả mãn 0 ≤ sin x ≤ 1.

Vậy giá trị lớn nhất của hàm số là 3, đạt được khi sin x = 1 hay x=π2+k2π  k .

Giá trị nhỏ nhất của hàm số là 1, đạt được khi sin x = 0 hay x = kπ (k ∈ ℤ).

c) Ta có y = 3 cos2 x + 4 cos2x =3.1+cos2x2+4cos2x=32+112cos2x .

Vì – 1 ≤ cos2x ≤ 1 nên 112112cos2x112 ,

do đó 4=3211232+112cos2x32+112=7  với mọi x ∈ ℝ.

Vậy giá trị lớn nhất của hàm số là 7, đạt được khi

cos 2x = 1 ⇔ 2x = k2π ⇔ x = kπ (k ∈ ℤ).

và giá trị nhỏ nhất của hàm số là – 4, đạt được khi

cos 2x = – 1 ⇔ 2x = π + k2π ⇔ x = π2  + kπ (k ∈ ℤ).

d) Ta có y = sin x + cos x = 2sinx+π4 .

Vì 1sinx+π41  nên 22sinx+π42 , với mọi x ∈ ℝ.

Vậy giá trị lớn nhất của hàm số là 2 , đạt được khi  sinx+π4=1

x+π4=π2+k2π   k hay x=π4+k2π  k .

Giá trị nhỏ nhất của hàm số là 2 , đạt được khi  sinx+π4=1

x+π4=π2+k2π   k hay x=3π4+k2π  k .

Đánh giá

0

0 đánh giá