Xét tính liên tục của các hàm số sau trên tập xác định của chúng: f(x) = x^3 + x + 1/ x^2 -3x +2

229

Với Giải Bài 5.24 trang 86 SBT Toán 11 Tập 1 trong Bài 17: Hàm số liên tục sách Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Xét tính liên tục của các hàm số sau trên tập xác định của chúng: f(x) = x^3 + x + 1/ x^2 -3x +2

Bài 5.24 trang 86 SBT Toán 11 Tập 1: Xét tính liên tục của các hàm số sau trên tập xác định của chúng:

a) fx=x3+x+1x23x+2

b) gx=cosxx2+3x4

Lời giải:

Áp dụng tính chất: Các hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.

a) fx=x3+x+1x23x+2

ĐKXĐ: x2 – 3x + 2 ≠ 0 ⇔ x ≠ 1 hoặc x ≠ 2.

Do đó, tập xác định của hàm số f(x) là D = (– ; 1)  (1; 2)  (2; +).

Vậy hàm số f(x) liên tục trên các khoảng (– ; 1), (1; 2), (2; +).

b)gx=cosxx2+3x4

ĐKXĐ: x2 + 3x – 4 ≠ 0 ⇔ x ≠ – 4  hoặc x ≠ 1.

Do đó, tập xác định của hàm số g(x) là D = (– ; – 4)  (– 4; 1)  (1; +).

Vậy hàm số g(x) liên tục trên các khoảng (– ; – 4), (– 4; 1), (1; +).

Đánh giá

0

0 đánh giá